4.8 Article

An intermolecular RNA triplex provides insight into structural determinants for the pseudoknot stimulator of-1 ribosomal frameshifting

期刊

NUCLEIC ACIDS RESEARCH
卷 38, 期 5, 页码 1676-1685

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkp1107

关键词

-

资金

  1. National Science Council of Taiwan [NSC 95-2311-B-005-013]
  2. National Chung-Hsing University, Taiwan

向作者/读者索取更多资源

An efficient -1 programmed ribosomal frameshifting (PRF) signal requires an RNA slippery sequence and a downstream RNA stimulator, and the hairpin-type pseudoknot is the most common stimulator. However, a pseudoknot is not sufficient to promote -1 PRF. hTPK-DU177, a pseudoknot derived from human telomerase RNA, shares structural similarities with several -1 PRF pseudoknots and is used to dissect the roles of distinct structural features in the stimulator of -1 PRF. Structure-based mutagenesis on hTPK-DU177 reveals that the -1 PRF efficiency of this stimulator can be modulated by sequential removal of base-triple interactions surrounding the helical junction. Further analysis of the junction-flanking base triples indicates that specific stem-loop interactions and their relative positions to the helical junction play crucial roles for the -1 PRF activity of this pseudoknot. Intriguingly, a bimolecular pseudoknot approach based on hTPK-DU177 reveals that continuing triplex structure spanning the helical junction, lacking one of the loop-closure features embedded in pseudoknot topology, can stimulate -1 PRF. Therefore, the triplex structure is an essential determinant for the DU177 pseudoknot to stimulate -1 PRF. Furthermore, it suggests that -1 PRF, induced by an in-trans RNA via specific base-triple interactions with messenger RNAs, can be a plausible regulatory function for non-coding RNAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据