4.8 Article

Reciprocal roles of SIRT1 and SKIP in the regulation of RAR activity: implication in the retinoic acid-induced neuronal differentiation of P19 cells

期刊

NUCLEIC ACIDS RESEARCH
卷 38, 期 3, 页码 822-831

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkp1056

关键词

-

资金

  1. Ministry of Education, Science and Technology [KRF-2008-313-C00864, R01-2008-000-10902-0, R01-2007-000-10308-0]
  2. Brain Korea 21 Program

向作者/读者索取更多资源

Human sirtuin 1 (SIRT1) is a NAD(+)-dependent deacetylase that participates in cell death/survival, senescence and metabolism. Although its substrates are well characterized, no direct regulators have been defined. Here, we show that SIRT1 associates with SKI-interacting protein (SKIP) and modulates its activity as a coactivator of retinoic acid receptor (RAR). Binding assays indicated that SKIP interacts with RAR in a RA-dependent manner, through a region that overlaps the binding site for SIRT1. SKIP augmented the transcriptional activation activity of RAR by cooperating with SRC-1, and SIRT1 suppressed SKIP/SRC-1-enhanced RAR transactivation activity. The suppression was dependent on the deacetylase activity of SIRT1 and was enhanced by a SIRT1 activator, resveratrol. In contrast, the suppression was relieved by SIRT1 knockdown, overexpression of SKIP and treatment with a SIRT1 inhibitor, splitomicin. Upon SKIP overexpression, the recruitment of SIRT1 to the endogenous RAR beta 2 promoter was severely impaired, and SKIP was recruited to the promoter instead. Finally, resveratrol treatment inhibited RA-induced neuronal differentiation of P19 cells, accompanied by reductions in the neuronal marker nestin and a RAR target gene, RAR beta 2. This inhibition was relieved by either knockdown of SIRT1 or overexpression of SKIP. These data suggest that SIRT1 and SKIP play reciprocal roles in the regulation of RAR activity, which is implicated in the regulation of RA-induced neuronal differentiation of P19 cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据