4.3 Article

The Guelph PIXE software package IV

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nimb.2010.07.012

关键词

Particle-induced X-ray emission analysis; X-ray detectors; Elemental analysis

资金

  1. Natural Sciences and Engineering Research Council of Canada

向作者/读者索取更多资源

Following the introduction of GUPIXWIN in 2005, a number of upgrades have been made in the interests of extending the applicability of the program. Extension of the proton upper energy limit to 5 MeV facilitates the simultaneous use of PIXE with other ion beam analysis techniques. Also, the increased penetration depth enables the complete PIXE analysis of paintings. A second database change is effected in which recently recommended values of L-subshell fluorescence and Coster-Kronig yields are adopted. A Monte Carlo code has been incorporated in the GUPIX package to provide detector efficiency values that are more accurate than those of the previous approximate analytical formula. Silicon escape peak modeling is extended to the back face of silicon drift detectors. An improved description of the attenuation in duracoated beryllium detector windows is devised. Film thickness determination is enhanced. A new batch mode facility is designed to handle two-detector PIXE, with one detector measuring major elements and the other simultaneously measuring trace elements. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Instruments & Instrumentation

X-ray-Induced scintillation properties of Cr-Doped Mg4Ta2O9 single crystals in Near-Infrared regions

Taisei Hayashi, Kensei Ichiba, Daisuke Nakauchi, Takumi Kato, Noriaki Kawaguchi, Takayuki Yanagida

Summary: In this study, Cr-doped Mg4Ta2O9 single crystals with different doping levels were synthesized using the floating zone method, and their photoluminescence and scintillation properties were evaluated. The results showed that Cr-doped Mg4Ta2O9 single crystals exhibited broad emission bands in the near-infrared region and showed scintillation characteristics within specific wavelength ranges. Additionally, the samples with different Cr doping levels demonstrated different lower detection limits based on the dose rate response function.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2024)

Article Instruments & Instrumentation

Monte Carlo simulation of electron emission from aluminum after low energy protons impact

S. Marouf, A. C. Chami, Y. Boudouma

Summary: This study develops a Monte Carlo simulation approach to describe proton-induced secondary electron emission in solids. Theoretical modeling based on the Mott's elastic scattering cross-section and Lindhard's dielectric function was used to calculate the double differential cross-section (DDCS) of excited electrons and describe electron transport in the medium. The results for aluminum show the angular and energy distributions of backscattered electrons for incident protons with energy below 25 keV at normal incidence, and the total electron emission yield also agrees well with available measurements.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2024)

Article Instruments & Instrumentation

Organic-inorganic hybrid perovskite scintillator for high-resolution X-ray imaging

Weipeng Yan, Baojun Duan, Zijian Zhu, Yan Song, Guzhou Song, Jiming Ma, Binkang Li, Yucheng Liu

Summary: This article reports on the scintillation performance of Lithium-doped 2D (PEA)2PbBr4 perovskite single crystals synthesized at room temperature. The crystals exhibit fast decay time, high light yield, and high spatial resolution, making them highly promising for medical diagnostic applications.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2024)

Article Instruments & Instrumentation

Influence of thermal annealing on silicon negative ion implanted SiO2 thin films

S. B. Vishwakarma, S. K. Dubey, R. L. Dubey, I. Sulania, D. Kanjilal

Summary: Investigations have been conducted on the implanted SiO2 thin film after thermal annealing using various analytical techniques. The results revealed the absence of vacancy defects, variations in vibrational modes and the formation of new structures. The photoluminescence intensity of the annealed SiO2 samples was higher, with a decrease in non-radiative defect centers and an increase in radiative Si:SiO2 interface states. Additionally, the presence of silicon nanoclusters formed after annealing resulted in an additional radiative recombination peak. Furthermore, the formation of new SiOx structures was observed after thermal annealing.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2024)

Article Instruments & Instrumentation

Linear energy transfer dependence of scintillation properties of CeF3

M. Koshimizu, S. Kurashima, A. Kimura, M. Taguchi

Summary: By observing the scintillation time profiles of CeF3 under irradiations of pulsed beams with different LETs, we found that the initial decay was faster for higher LET, which is consistent with previous studies on other self-activated scintillators. This faster decay at higher LET can be explained by the competition between the scintillation caused by 5d-4f transition of Ce3+ ions and quenching due to the interaction between excited Ce3+ ions close to each other.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2024)

Article Instruments & Instrumentation

Study on the production of hydrogen atomic beams by stripping negative hydrogen ions in a gas target

Junjie Shi, Jianhong Hao, Fang Zhang, Qiang Zhao, Bixi Xue, Jieqing Fan, Zhiwei Dong

Summary: This study examined the neutralization process and beam quality of a hydrogen beam by emitting negative hydrogen ions to a hydrogen target. The findings showed that the neutralization efficiency was influenced by variables such as the transport distance, energy, and target gas density. However, the maximal neutralization efficiency was not affected by the density of the target gas or the energy of the negative hydrogen ions.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2024)