4.5 Article

An experimental study on pressure drop and dryout heat flux of two-phase flow in packed beds of multi-sized and irregular particles

期刊

NUCLEAR ENGINEERING AND DESIGN
卷 242, 期 -, 页码 369-378

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2011.11.006

关键词

-

资金

  1. APR17
  2. SAR-NET2
  3. ENSI
  4. NKS

向作者/读者索取更多资源

This paper is concerned with debris bed coolability in a postulated severe accident of light water reactors, where the debris particles are irregular and multi-sized. To obtain and verify the friction laws predicting the hydrodynamics of the debris beds, the drag characteristics of air/water single- and two-phase flow in a particulate bed packed with multi-sized spheres or irregular sand particles were investigated on the POMECO-FL test facility. The same types of particles were then loaded in the test section of the POMECO-HT facility to obtain the dryout heat fluxes of the particulate beds heated volumetrically. The effective (mean) particle diameter is 2.25 mm for the multi-sized spheres and 1.75 mm for the sand particles, determined from the Ergun equation and the measured pressure drop of single-phase flow through the packed bed. Given the effective particle diameter, both the pressure drop and the dryout heat flux of two-phase flow through the bed can be predicted by the Reed model. The experiment also shows that the bottom injection of coolant improves the dryout heat flux significantly and the first dryout position is moving upward with increasing bottom injection flowrate. Compared with top-flooding case, the dryout heat flux of the bed can be doubled if the superficial velocity of coolant injection is 0.21-0.27 mm/s. The experimental data provides insights for interpretation of debris bed coolability (how to deal with the multi-sized irregular particles), as well as high-quality data for validation of the coolability analysis models and codes. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据