4.5 Article Proceedings Paper

Treatment of radioactive ionic exchange resins by super- and sub-critical water oxidation (SCWO)

期刊

NUCLEAR ENGINEERING AND DESIGN
卷 240, 期 10, 页码 3654-3659

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.nucengdes.2010.06.018

关键词

-

向作者/读者索取更多资源

As the usage of ion exchange resins increases the inventory of spent ion exchange resins increases in nuclear power plants. This study is to find an environmental-friendly process to treat theses spent resins. The test samples were prepared by diluting the slurry made by wet ball milling the spent cationic exchange resins for 24 h. The spent cationic exchange resins were separated from mixed ion exchange resins by a fluidized bed gravimetric separator. The decomposition of the samples was investigated with super-critical water oxidation (SCWO) equipment. A statistical test method the central composite design as a statistical design of experiments was adopted to find the optimum condition to decompose the spent exchange resins. The optimum condition was 60% of excess oxygen, 22.5 min of residence time, 0.615 wt% of NaOH, 358 of reaction temperature, and 3600 psi of reaction pressure, which is a sub-critical condition. The liquid product of the decomposition has the characteristics of 80-185 ppm of COD (Chemical Oxygen Demand), 4.0-6.0 of pH, and <1.0 ppm of corrosive components (Ni, Fe, Cr, and Mo). The exhaust gas from the SCWO equipment contained NOx of 0 ppm, SOx of 3 ppm (environment exhaust standard in Korea: NOx 200 ppm, SOx 300 ppm). Co-substituted mock samples were prepared to simulate spent cationic exchange resins from nuclear power plants which can contain radioactive Co isotopes. The conditions to obtain organic compound destruction ratio which conforms the effluent stand for the mock samples were found. The treated water filtered with 0.2-filter contained less than 1 ppm of Co. Thus Co recovery rate of more 99% was achieved. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据