4.4 Article

The resistance of electron-transport chain Fe-S clusters to oxidative damage during the reaction of peroxynitrite with mitochondrial complex II and rat-heart pericardium

期刊

NITRIC OXIDE-BIOLOGY AND CHEMISTRY
卷 20, 期 3, 页码 135-142

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.niox.2008.12.001

关键词

Aconitase; Mitochondria; Cardiomyocytes; Complex II; EPR; Iron-sulfur clusters; Succinate dehydrogenase; Nitric oxide; Peroxynitrite

资金

  1. National Institute of Health [HL61411]

向作者/读者索取更多资源

The effects of peroxynitrite and nitric oxide on the iron-sulfur clusters in complex II (succinate dehydrogenase) isolated from bovine heart have been studied primarily by EPR spectroscopy and no measurable damage to the constitutive 2Fe-2S, 3Fe-4S, or 4Fe-4S clusters was observed. The enzyme can be repeatedly oxidized with a slight excess of peroxynitrite and then quantitatively re-reduced with succinate. When added in large excess, peroxynitrite reacted with at least one tyrosine in each subunit of complex II to form 3-nitrotyrosines, but activity was barely compromised. Examination of rat-heart pericardium subjected to conditions leading to peroxynitrite production showed a small inhibition of complex II (16%) and a greater inhibition of aconitase (77%). In addition, experiments performed with excesses of sodium citrate and sodium succinate on rat-heart pericardium indicated that the g similar to 2.01 EPR signal observed immediately following the beginning of conditions modeling oxidative/nitrosative stress, could be a consequence of both reversible oxidation of the constitutive 3Fe-4S cluster in complex II and degradation of the 4Fe-4S cluster in aconitase. However, the net signal envelope, which becomes apparent in less than 1 min following the start of oxidative/nitrosative conditions, is dominated by the component arising from complex II. Taking into account the findings of a previous study concerning complexes 1 and III (L.L. Pearce, A.J. Kanai, M.W. Epperly, J. Peterson, Nitrosative stress results in irreversible inhibition of purified mitochondrial complexes I and III without modification of cofactors, Nitric Oxide 13 (2005) 254-263) it is now apparent that, with the exception of the cofactor in aconitase, mammalian (mitochondrial) iron-sulfur clusters are surprisingly resistant to degradation stemming from oxidative/nitrosative stress. (C) 2008 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据