4.6 Article

Cavity-enhanced storage in an optical spin-wave memory

期刊

NEW JOURNAL OF PHYSICS
卷 16, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/16/8/083005

关键词

quantum communication; photonic memory; cavity-enhanced light-matter interactions; rare-earth-ion doped crystals

资金

  1. Swiss National Centres of Competence in Research (NCCR) project Quantum Science Technology (QSIT)
  2. European Union [287252]

向作者/读者索取更多资源

We report on the experimental demonstration of an optical spin-wave memory, based on the atomic frequency comb (AFC) scheme, where the storage efficiency is strongly enhanced by an optical cavity. The cavity is of low finesse, but operated in an impedance matching regime to achieve high absorption in our intrinsically low-absorbing Eu3+:Y2SiO5 crystal. For storage of optical pulses as an optical excitation (AFC echoes), we reach efficiencies of 53% and 28% for 2 mu s and 10 mu s delays, respectively. For a complete AFC spin-wave memory we reach an efficiency of 12%, including spin-wave dephasing, which is a 12-fold increase with respect to previous results in this material. This result is an important step towards the goal of making efficient and long-lived quantum memories based on spin waves, in the context of quantum repeaters and quantum networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据