4.6 Article

Elemental vacancy diffusion database from high-throughput first-principles calculations for fcc and hcp structures

期刊

NEW JOURNAL OF PHYSICS
卷 16, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/16/1/015018

关键词

-

资金

  1. US Department of Energy (DOE) Nuclear Engineering University Program (NEUP) [10-888]
  2. National Science Foundation (NSF) [DGE-0718123, 1148011]
  3. NSF Software Infrastructure for Sustained Innovation (SI2) [1148011]
  4. Office of Science of the US Department of Energy [DE-AC02-05CH11231]
  5. Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy
  6. Office of Advanced Cyberinfrastructure (OAC)
  7. Direct For Computer & Info Scie & Enginr [1148011] Funding Source: National Science Foundation

向作者/读者索取更多资源

This work demonstrates how databases of diffusion-related properties can be developed from high-throughput ab initio calculations. The formation and migration energies for vacancies of all adequately stable pure elements in both the face-centered cubic (fcc) and hexagonal close packing (hcp) crystal structures were determined using ab initio calculations. For hcp migration, both the basal plane and z-direction nearest-neighbor vacancy hops were considered. Energy barriers were successfully calculated for 49 elements in the fcc structure and 44 elements in the hcp structure. These data were plotted against various elemental properties in order to discover significant correlations. The calculated data show smooth and continuous trends when plotted against Mendeleev numbers. The vacancy formation energies were plotted against cohesive energies to produce linear trends with regressed slopes of 0.317 and 0.323 for the fcc and hcp structures respectively. This result shows the expected increase in vacancy formation energy with stronger bonding. The slope of approximately 0.3, being well below that predicted by a simple fixed bond strength model, is consistent with a reduction in the vacancy formation energy due to many-body effects and relaxation. Vacancy migration barriers are found to increase nearly linearly with increasing stiffness, consistent with the local expansion required to migrate an atom. A simple semi-empirical expression is created to predict the vacancy migration energy from the lattice constant and bulk modulus for fcc systems, yielding estimates with errors of approximately 30%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据