4.6 Article

Unifying projected entangled pair state contractions

期刊

NEW JOURNAL OF PHYSICS
卷 16, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/16/3/033014

关键词

computational physics; condensed matter: electrical; magnetic and optical; quantum information and quantum mechanics

资金

  1. EU through a SIQS grant [FP7 600645]
  2. DFG (Cluster of Excellence NIM)

向作者/读者索取更多资源

The approximate contraction of a tensor network of projected entangled pair states (PEPS) is a fundamental ingredient of any PEPS algorithm, required for the optimization of the tensors in ground state search or time evolution, as well as for the evaluation of expectation values. An exact contraction is in general impossible, and the choice of the approximating procedure determines the efficiency and accuracy of the algorithm. We analyze different previous proposals for this approximation, and show that they can be understood via the form of their environment, i.e. the operator that results from contracting part of the network. This provides physical insight into the limitation of various approaches, and allows us to introduce a new strategy, based on the idea of clusters, that unifies previous methods. The resulting contraction algorithm interpolates naturally between the cheapest and most imprecise and the most costly and most precise method. We benchmark the different algorithms with finite PEPS, and show how the cluster strategy can be used for both the tensor optimization and the calculation of expectation values. Additionally, we discuss its applicability to the parallelization of PEPS and to infinite systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据