4.6 Article

Electron-induced damage of biotin studied in the gas phase and in the condensed phase at a single-molecule level

期刊

NEW JOURNAL OF PHYSICS
卷 15, 期 -, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1367-2630/15/8/083045

关键词

-

资金

  1. Polish Ministry of Science and Higher Education
  2. Danish National Research Foundation
  3. Danish Research Agency
  4. Deutsche Forschungsgemeinschaft
  5. Alexander von Humboldt foundation

向作者/读者索取更多资源

Biotin is an essential vitamin that is, on the one hand, relevant for the metabolism, gene expression and in the cellular response to DNA damage and, on the other hand, finds numerous applications in biotechnology. The functionality of biotin is due to two particular sub-structures, the ring structure and the side chain with carboxyl group. The heterocyclic ring structure results in the capability of biotin to form strong intermolecular hydrogen and van der Waals bonds with proteins such as streptavidin, whereas the carboxyl group can be employed to covalently bind biotin to other complex molecules. Dissociative electron attachment (DEA) to biotin results in a decomposition of the ring structure and the carboxyl group, respectively, within resonant features in the energy range 0-12 eV, thereby preventing the capability of biotin for intermolecular binding and covalent coupling to other molecules. Specifically, the fragment anions (M-H)(-), (M-O)(-), C3N2O-, CH2O2-, OCN-, CN-, OH- and O- are observed, and exemplarily the DEA cross section of OCN- formation is determined to be 3 x 10(-19) cm(2). To study the response of biotin to electrons within a complex condensed environment, we use the DNA origami technique and determine a dissociation yield of (1.1 +/- 0.2) x 10(-14) cm(2) at 18 eV electron energy, which represents the most relevant energy for biomolecular damage induced by secondary electrons. The present results thus have important implications for the use of biotin as a label in radiation experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据