4.6 Article

Optical lattice quantum simulator for quantum electrodynamics in strong external fields: spontaneous pair creation and the Sauter-Schwinger effect

期刊

NEW JOURNAL OF PHYSICS
卷 14, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/14/3/035001

关键词

-

资金

  1. DFG [SFB-TR12]

向作者/读者索取更多资源

The spontaneous creation of electron-positron pairs out of the vacuum due to a strong electric field is a spectacular manifestation of the relativistic energy-momentum relation for the Dirac fermions. This fundamental prediction of quantum electrodynamics has not yet been confirmed experimentally, as the generation of a sufficiently strong electric field extending over a large enough space-time volume still presents a challenge. Surprisingly, distant areas of physics may help us to circumvent this difficulty. In condensed matter and solid state physics (areas commonly considered as low-energy physics), one usually deals with quasi-particles instead of real electrons and positrons. Since their mass gap can often be freely tuned, it is much easier to create these light quasi-particles by an analogue of the Sauter-Schwinger effect. This motivates our proposal for a quantum simulator in which excitations of ultra-cold atoms moving in a bichromatic optical lattice represent particles and antiparticles (holes) satisfying a discretized version of the Dirac equation together with fermionic anti-commutation relations. Using the language of second quantization, we are able to construct an analogue of the spontaneous pair creation which can be realized in an (almost) table-top experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据