4.6 Article

Thermodynamic entropy of a many-body energy eigenstate

期刊

NEW JOURNAL OF PHYSICS
卷 12, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/12/7/075021

关键词

-

向作者/读者索取更多资源

It is argued that a typical many-body energy eigenstate has a well-defined thermodynamic entropy and that individual eigenstates possess thermodynamic characteristics analogous to those of generic isolated systems. We examine large systems with eigenstate energies equivalent to finite temperatures. When quasi-static evolution of a system is adiabatic (in the quantum mechanical sense), two coupled subsystems can transfer heat from one subsystem to another and yet remain in an energy eigenstate. To explicitly construct the entropy from the wave function, degrees of freedom are divided into two unequal parts. It is argued that the entanglement entropy between these two subsystems is the thermodynamic entropy per degree of freedom for the smaller subsystem. This is done by tracing over the larger subsystem to obtain a density matrix and calculating the diagonal and off-diagonal contributions to the entanglement entropy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据