4.6 Article

Real space visualization of thermal fluctuations in a triangular flux-line lattice

期刊

NEW JOURNAL OF PHYSICS
卷 12, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/12/3/033022

关键词

-

向作者/读者索取更多资源

The temperature-dependent properties of a triangular flux-line lattice (FLL) in the low-flux density regime were investigated by evaluating the imaged flux-line (FL) size and the lattice regularity observed in real space utilizing magnetic force microscopy (MFM). At low temperatures, pinning by randomly distributed point defects in the anisotropic type-II superconductor Bi2Sr2CaCu2O8+delta results in curved FLs and lateral disorder within the FLL (Bragg glass). Above 30 K, depinning of pancake vortices (PVs) leads to straightening of FLs and a better-ordered lattice. Evaluation of the temperature-dependent imaged FL size allows us to determine the stiffness of the potential, in which FLs in the lattice are caged due to mutual repulsion between them. At 54.1 K, far below melting temperatures reported so far, thermal fluctuations plus the lateral force exerted by the scanning tip facilitate decoupling of PVs near the surface and the image contrast exhibit a liquid-like behavior. Our analysis demonstrates the ability of MFM to obtain three-dimensional information on the arrangement of PVs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据