4.6 Article

Quantum illumination versus coherent-state target detection

期刊

NEW JOURNAL OF PHYSICS
卷 11, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/11/6/063045

关键词

-

资金

  1. W M Keck Foundation Center for Extreme Quantum Information Theory
  2. DARPA Quantum Sensors Program

向作者/读者索取更多资源

Entanglement is arguably the key quantum-mechanical resource for improving the performance of communication, precision measurement and computing systems beyond their classical-physics limits. Yet entanglement is fragile, being very susceptible to destruction by the decoherence arising from loss and noise. Surprisingly, Lloyd (2008 Science 321 1463) recently proved that a very large performance gain accrues from use of entanglement in single-photon target detection within an entanglement-destroying lossy, noisy environment when compared to what can be achieved with unentangled single-photon states. We extend Lloyd's analysis to the full multiphoton input Hilbert space. We show that the performance of Lloyd's single-photon 'quantum illumination' system is, at best, equal to that of a coherent-state transmitter of the same average photon number, and may be substantially worse. We demonstrate that the coherent-state system derives its advantage from the coherence between a sequence of weak-single photon on average-transmissions, a possibility that was not allowed for in Lloyd's work. Nevertheless, as shown by Tan et al (2008 Phys. Rev. Lett. 101 253601), quantum illumination may offer a significant, although more modest, performance gain when operation is not limited to the single-photon regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据