4.6 Article

Heat conduction and Fourier's law in a class of many particle dispersing billiards

期刊

NEW JOURNAL OF PHYSICS
卷 10, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/10/10/103004

关键词

-

资金

  1. Belgian Federal Government under the Interuniversity Attraction Pole [NOSY P06/02]
  2. Communaute francaise de Belgique [ARC 04/09-312]
  3. Fonds de la Recherche Scientifique FRS-FNRS

向作者/读者索取更多资源

We consider the motion of many confined billiard balls in interaction and discuss their transport and chaotic properties. In spite of the absence of mass transport, due to confinement, energy transport can take place through binary collisions between neighbouring particles. We explore the conditions under which relaxation to local equilibrium occurs on timescales much shorter than that of binary collisions, which characterize the transport of energy, and subsequent relaxation to local thermal equilibrium. Starting from the pseudo-Liouville equation for the time evolution of phase-space distributions, we derive a master equation which governs the energy exchange between the system constituents. We thus obtain analytical results relating the transport coefficient of thermal conductivity to the frequency of collision events and compute these quantities. We also provide estimates of the Lyapunov exponents and Kolmogorov-Sinai entropy under the assumption of scale separation. The validity of our results is confirmed by extensive numerical studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据