4.6 Article

Electrically conductive nanocomposite hydrogels embedded with functionalized carbon nanotubes for spinal cord injury

期刊

NEW JOURNAL OF CHEMISTRY
卷 42, 期 21, 页码 17671-17681

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8nj03038c

关键词

-

资金

  1. Mayo Foundation

向作者/读者索取更多资源

More than a million people are suffering from spinal cord injury (SCI) worldwide. However, currently there are no therapies that could ameliorate the neurological impairments, and the long-term SCI survival rate is far from satisfactory. Electrical stimulation and electrically conductive conduits are emerging as promising strategies with positive results showing increased neurite and axon growth in vitro and in vivo. In this study, we functionalized carbon nanotubes (CNTs) with hydrophilic poly(ethylene glycol) (PEG) chains and further introduced crosslinkablility with double bonds. The final carbon-nanotube-poly(ethylene glycol)-acrylate (CNTpega) material was embedded within oligo(poly(ethylene glycol) fumarate) (OPF) at varying concentrations to form conductive hydrogels with modulable conductivities. The morphological properties, mechanical strengths, conductivities, and CNT distributions within the hydrogels were characterized. In vitro neural cell adhesion and proliferation as well as neurite development after nerve growth factor (NGF) induction showed significant enhancement in the conductive hydrogels. Various types of nerve conduits were then successfully fabricated using an injection molding technique. With many desired properties, these conductive nerve conduits have promising potential for promoting axon guidance and enhancing nerve recovery in spinal cord injury patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据