4.3 Article

Wnt/β-catenin pathway involvement in ionizing radiation-induced invasion of U87 glioblastoma cells

期刊

STRAHLENTHERAPIE UND ONKOLOGIE
卷 191, 期 8, 页码 672-680

出版社

URBAN & VOGEL
DOI: 10.1007/s00066-015-0858-7

关键词

Ionizing radiation; Glioblastoma; Invasion; Wnt/beta-catenin pathway; Radioresitance

资金

  1. National Natural Sciences Foundation of China [81272780]

向作者/读者索取更多资源

Background Radiotherapy has been reported to promote the invasion of glioblastoma cells; however, the underlying mechanisms remain unclear. Here, we investigated the role of the Wnt/beta-catenin pathway in radiation-induced invasion of glioblastoma cells. Methods U87 cells were irradiated with 3 Gy or sham irradiated in the presence or absence of the Wnt/beta-catenin pathway inhibitor XAV 939. Cell invasion was determined by an xCELLigence real-time cell analyser and matrigel invasion assays. The intracellular distribution of beta-catenin in U87 cells with or without irradiation was examined by immunofluorescence and Western blotting of nuclear fractions. We next investigated the effect of irradiation on Wnt/beta-catenin pathway activity using TOP/FOP flash luciferase assays and quantitative polymerase chain reaction analysis of beta-catenin target genes. The expression levels and activities of two target genes, matrix metalloproteinase (MMP)-2 and MMP-9, were examined further by Western blotting and zymography. Results U87 cell invasiveness was increased significantly by ionizing radiation. Interestingly, ionizing radiation induced nuclear translocation and accumulation of beta-catenin. Moreover, we found increased beta-catenin/TCF transcriptional activities, followed by up-regulation of downstream genes in the Wnt/beta-catenin pathway in irradiated U87 cells. Importantly, inhibition of the Wnt/beta-catenin pathway by XAV 939, which promotes degradation of beta-catenin, significantly abrogated the pro-invasion effects of irradiation. Mechanistically, XAV 939 suppressed ionizing radiation-triggered up-regulation of MMP-2 and MMP-9, and inhibited the activities of these gelatinases. Conclusion Our data demonstrate a pivotal role of the Wnt/beta-catenin pathway in ionizing radiation-induced invasion of glioblastoma cells, and suggest that targeting beta-catenin is a promising therapeutic approach to overcoming glioma radioresistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据