4.2 Article

Examining mechanisms of brain control of bladder function with resting state functional connectivity MRI

期刊

NEUROUROLOGY AND URODYNAMICS
卷 33, 期 5, 页码 493-501

出版社

WILEY
DOI: 10.1002/nau.22458

关键词

brain bladder control; brain imaging; overactive bladder; functional MRI; resting state connectivity MRI; urgency incontinence

资金

  1. Pfizer OAB-LUTS Competitive
  2. OHSU New Faculty Institutional Support
  3. Advanced Imaging Research Center at OHSU

向作者/读者索取更多资源

Aims This aim of this study is to identify the brain mechanisms involved in bladder control. Methods We used fMRI to identify brain regions that are activated during bladder filling. We then used resting state connectivity fMRI (rs-fcMRI) to assess functional connectivity of regions identified by fMRI with the rest of the brain as the bladder is filled to capacity. Results Female participants (n=20) were between ages 40 and 64 with no significant history of symptomatic urinary incontinence. Main effect of time (MET) fMRI analysis resulted in 20 regions of interest (ROIs) that have significant change in BOLD signal (z=3.25, P<0.05) over the course of subtle bladder filling and emptying regardless of full versus empty bladder state. Bladder-state by time (BST) fMRI analysis resulted in three ROIs that have significant change in BOLD signal (z=3.25, P<0.05) over the course of bladder runs comparing full versus empty bladder state. Rs-fcMRI fixed effects analysis identified significant changes in connectivity between full and empty bladder states in seven brain regions (z=4.0) using the three BST ROIs and sixteen brain regions (z=7) using the twenty MET ROIs. Regions identified include medial frontal gyrus, posterior cingulate (PCC), inferiolateral temporal and post-central gyrus, amygdale, the caudate, inferior parietal lobe as well as anterior and middle cingulate gyrus. Conclusions There is significant and vast changes in the brain's functional connectivity when bladder is filled suggesting that the central process responsible for the increased control during the full bladder state appears to largely rely on the how distributed brain systems are functionally integrated. Neurourol. Urodynam. 33:493-501, 2014. (c) 2013 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据