4.7 Review

Psychostimulants and motivated behavior: Arousal and cognition

期刊

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS
卷 37, 期 9, 页码 1976-1984

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neubiorev.2012.11.005

关键词

Norepinephrine; Dopamine; Stimulants; Executive function; ADHD; Addiction; Catecholamines; Prefrontal cortex; Amphetamine; Methylphenidate; alpha 1 receptors; alpha 2 receptors; beta receptors; D1 receptors; D2 receptors

向作者/读者索取更多资源

Motivated, goal-directed behavior requires the coordination of multiple behavioral processes that facilitate interacting with the environment, including arousal, motivation, and executive function. Psychostimulants exert potent modulatory influences on these processes, providing a useful tool for understanding the neurobiology of motivated behavior. The neural mechanisms underlying the reinforcing effects of psychostimulants have been extensively studied over the past 50 years. In contrast, the study of the neurobiology of the arousal-enhancing and executive-modulating actions of psychostimulants was only initiated relatively recently. This latter work identifies a series of dose-dependent actions of psychostimulants within a network of prefrontal cortical and subcortical sites that coordinate the arousal-promoting and cognition-modulating effects of these drugs. These actions are dependent on a variety of catecholamine receptor subtypes, including noradrenergic alpha 1 and alpha 2 receptors and dopaminergic D1 receptors. In the prefrontal cortex, psychostimulants exert inverted-U shaped modulatory actions that are apparent at the levels of the neuron and behavior. Collectively, these observations provide new insight into the neurobiology underlying motivated, goal-directed behavior. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Behavioral Sciences

Success versus failure in cognitive control: Meta-analytic evidence from neuroimaging studies on error processing

Edna C. Cieslik, Markus Ullsperger, Martin Gell, Simon B. Eickhoff, Robert Langner

Summary: Previous studies on error processing have primarily focused on the posterior medial frontal cortex, but the role of other brain regions has been underestimated. This study used activation likelihood estimation meta-analyses to explore brain activity related to committing errors and responding successfully in interference tasks. It was found that the salience network and the temporoparietal junction were commonly involved in both correct and incorrect responses, indicating their general involvement in coping with situations that require increased cognitive control. Error-specific convergence was observed in the dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus, while successful responding showed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruitment of these regions in error trials may reflect failures in activating the appropriate stimulus-response contingencies necessary for successful response execution.

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS (2024)