4.7 Review

Potential opposite roles of the extracellular signal-regulated kinase (ERK) pathway in autism spectrum and bipolar disorders

期刊

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS
卷 36, 期 10, 页码 2206-2213

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neubiorev.2012.07.008

关键词

Timothy syndrome; SYNGAP1; ERK1; Circadian rhythm

向作者/读者索取更多资源

Signal transduction from the synapse to the nucleus subsequently involves transient increases in synaptic Ca2+, activation of CaM kinases, activation of the GTPase Ras, activation of the ERK mitogen-activated protein kinase pathway, and finally GSK3 inhibition and CREB-activation. Genetic studies in autism have identified mutations and copy number variations in a number of genes involved in this synapse to nucleus signaling path. In particular, a gain of function mutation in the CACNA1C gene, deletions and disruption of the SYNGAP1 gene, a copy number variation encompassing the MAPK3 gene and a duplication of YWHAE indicate that in a subset of autism patients the ERK cascade is inappropriately activated. Predicted functional consequences of this hyperactivation would be an increase in complexity of the dendritic tree, and via inhibition of GSK3, a delayed circadian phase. The latter effect indeed fits the frequent sleep disturbances observed in autistic patients. Interestingly, the sleep disturbances in bipolar disorder patients are frequently characterized as phase advanced. A selective evaluation of genetic mutations in bipolar patients indicates that the activity of the ERK cascade, at least in a subset of patients, presumably is hypoactive. Thus, with respect to the ERK pathway, autism and bipolar disorder seem each other's counter pole. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Behavioral Sciences

Success versus failure in cognitive control: Meta-analytic evidence from neuroimaging studies on error processing

Edna C. Cieslik, Markus Ullsperger, Martin Gell, Simon B. Eickhoff, Robert Langner

Summary: Previous studies on error processing have primarily focused on the posterior medial frontal cortex, but the role of other brain regions has been underestimated. This study used activation likelihood estimation meta-analyses to explore brain activity related to committing errors and responding successfully in interference tasks. It was found that the salience network and the temporoparietal junction were commonly involved in both correct and incorrect responses, indicating their general involvement in coping with situations that require increased cognitive control. Error-specific convergence was observed in the dorsal posterior cingulate cortex, posterior thalamus, and left superior frontal gyrus, while successful responding showed stronger convergence in the dorsal attention network and lateral prefrontal regions. Underrecruitment of these regions in error trials may reflect failures in activating the appropriate stimulus-response contingencies necessary for successful response execution.

NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS (2024)