4.5 Article

AMP KINASE REGULATES K-ATP CURRENTS EVOKED BY NMDA RECEPTOR STIMULATION IN RAT SUBTHALAMIC NUCLEUS NEURONS

期刊

NEUROSCIENCE
卷 274, 期 -, 页码 138-152

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2014.05.031

关键词

AMP kinase; NMDA; Subthalamic nucleus; Brain slice; K-ATP; Patch-clamp

资金

  1. NIH [NS038715]
  2. Portland Veterans Affairs Parkinson's Disease Research, Education, and Clinical Center

向作者/读者索取更多资源

Our lab recently showed that N-methyl-D-aspartate (NMDA) evokes ATP-sensitive K+ (K-ATP) currents in subthalamic nucleus (STN) neurons in slices of the rat brain. Both K-ATP channels and 5'-adenosine monophosphate-activated protein kinase (AMPK) are considered cellular energy sensors because their activities are influenced by the phosphorylation state of adenosine nucleotides. Moreover, AMPK has been shown to regulate K-ATP function in a variety of tissues including pancreas, cardiac myocytes, and hypothalamus. We used whole-cell patch clamp recordings to study the effect of AMPK activation on K-ATP channel function in STN neurons in slices of the rat brain. We found that bath or intracellular application of the AMPK activators A769662 and PT1 augmented tolbutamide-sensitive K-ATP currents evoked by NMDA receptor stimulation. The effect of AMPK activators was blocked by the AMPK inhibitor dorsomorphin (compound C), and by STO609, an inhibitor of the upstream AMPK activator CaMKK beta. AMPK augmentation of NMDA-induced K-ATP current was also blocked by intracellular BAPTA and by inhibitors of nitric oxide synthase and guanylyl cyclase. However, A769662 did not augment currents evoked by the K-ATP channel opener diazoxide. In the presence of NMDA, A769662 inhibited depolarizing plateau potentials and burst firing, both of which could be antagonized by tolbutamide or dorsomorphin. These studies show that AMPK augments NMDA-induced K-ATP currents by a Ca2+-dependent process that involves nitric oxide and cGMP. By augmenting K-ATP currents, AMPK activation would be expected to dampen the excitatory effect of glutamate-mediated transmission in the STN. Published by Elsevier Ltd. on behalf of IBRO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据