4.5 Article

D184E MUTATION IN AQUAPORIN-4 GENE IMPAIRS WATER PERMEABILITY AND LINKS TO DEAFNESS

期刊

NEUROSCIENCE
卷 197, 期 -, 页码 80-88

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2011.09.023

关键词

D184E; AQP4; aquaporins; deafness; water transport; OAPS

向作者/读者索取更多资源

Aquaporins (AQPs) play a physiological role in several organs and tissues, and their alteration is associated with disorders of water regulation. The identification of molecular interactions, which are crucial in determining the rate of water flux through the channel, is of pivotal role for the discovery of molecules able to target those interactions and therefore to be used for pathologies ascribable to an altered AQP-dependent water balance. In the present study, a mutational screening of human aquaporin-4 (AQP4) gene was performed on subjects with variable degrees of hearing loss. One heterozygous missense mutation was identified in a Spanish sporadic case, leading to an Asp/Glu amino acid substitution at position 184 (D184E). A BLAST analysis revealed that the amino acid D184 is conserved across species, consistently with a crucial role in the structure/function of AQP4 water channels. The mutation induces a significant reduction in water permeability as measured by the Xenopus laevis oocytes swelling assay and by the use of mammalian cells by total internal reflection microscopy. By Western blot, immunofluorescence and 2D Blue Native/SDS-PAGE we show that the reduction in water permeability is not ascribable to a reduced expression of AQP4 mutant protein or to its incorrect plasma membrane targeting and aggregation into orthogonal arrays of particles. Molecular dynamics simulation provided a molecular explanation of the mechanism whereby the mutation induces a loss of function of the channel. Substituting glutamate for aspartate affects the mobility of the D loop, which acquires a higher propensity to equilibrate in a closed conformation, thus affecting the rate of water flux. We speculate that this mutation, combined with other genetic defects or concurrently with certain environmental stimuli, could confer a higher susceptibility to deafness. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据