4.5 Article

ANATOMICAL CONNECTIONS BETWEEN THE ANTERIOR AND POSTERODORSAL SUB-REGIONS OF THE MEDIAL AMYGDALA: INTEGRATION OF ODOR AND HORMONE SIGNALS

期刊

NEUROSCIENCE
卷 170, 期 2, 页码 610-622

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2010.06.075

关键词

reproductive behavior; hamsters; olfaction; Fos; androgen receptor; retrograde tracer

资金

  1. NIH [MH072930]
  2. NSF [IBN 9876754]

向作者/读者索取更多资源

In many rodent species, such as Syrian hamsters, reproductive behavior requires neural integration of chemosensory information and steroid hormone cues. The medial amygdala processes both of these signals through anatomically distinct sub-regions; the anterior region (MeA) receives substantial chemosensory input, but contains few steroid receptor-labeled neurons, whereas the posterodorsal region (MePD) receives less chemosensory input, but contains dense populations of androgen and estrogen receptors. Importantly, these sub-regions have considerable reciprocal connections, and previous studies in our laboratory have shown that functional interactions between MeA and MePD are required for the preference to investigate opposite-sex odors in male hamsters. We therefore hypothesized that chemosensory and hormone signals are conveyed directly between MeA and MePD. To test this hypothesis, we injected the retrograde tracer, cholera toxin B (CTB), into either MeA or MePD of male subjects and identified whether retrogradely labeled cells within MePD or MeA, respectively, expressed (1) Fos protein following exposure to female or male odors or (2) androgen receptors (AR). Approximately 36% of CTB-labeled cells within MeA (that project to MePD) also expressed Fos following exposure to either social odor, compared to the only 13% of CTB-labeled cells within MePD (that project to MeA) that also expressed odor-induced Fos. In contrast, 57% of CTB-labeled cells within MePD also contained AR, compared to the 28% of CTB-labeled cells within MeA that were double-labeled for AR/CTB. These results provide the first anatomical evidence that chemosensory and hormone cues are conveyed directly between MeA and MePD. Furthermore, these data suggest that chemosensory information is conveyed primarily from MeA to MePD, whereas hormone information is conveyed primarily from MePD to MeA. More broadly, the interactions between MeA and MePD may represent a basic mechanism by which the brain integrates information about social cues in the environment with hormonal indices of reproductive state. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据