4.5 Review

THE GENETICS OF BIPOLAR DISORDER

期刊

NEUROSCIENCE
卷 164, 期 1, 页码 331-343

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2009.03.080

关键词

bipolar disorder; genetic; GWAS; genetic epidemiology; association; candidate gene

资金

  1. NIMH NIH HHS [R01 MH079799-02, R01 MH079799] Funding Source: Medline

向作者/读者索取更多资源

Bipolar disorder is a mood disorder characterized by impairing episodes of mania and depression. Twin studies have established that bipolar disorder is among the most heritable of medical disorders and efforts to identify specific susceptibility genes have intensified over the past two decades. The search for genes influencing bipolar disorder has been complicated by a paucity of animal models, limited understanding of pathogenesis, and the genetic and phenotypic complexity of the syndrome. Linkage studies have implicated several chromosomal regions as harboring relevant genes, but results have been inconsistent. It is now widely accepted that the genetic liability to bipolar disorder reflects the action of many genes of individually small effect, a scenario for which linkage studies are poorly suited. Thus, association studies, which are more powerful for the detection of modest effect loci, have become the focus of gene-finding research. A large number of candidate genes, including biological candidates derived from hypotheses about the pathogenesis of the disorder and positional candidates derived from linkage and cytogenetic studies, have been evaluated. Several of these genes have been associated with the disorder in independent studies (including BDNF, DAOA, DISCI, GRIK4, SLC6A4, and TPH2), but none has been established. The clinical heterogeneity of bipolar disorder and its phenotypic and genetic overlap with other disorders (especially schizophrenia, schizoaffective disorder, and major depressive disorder) have raised questions about the optimal phenotype definition for genetic studies. Nevertheless, genome-wide association analysis, which has successfully identified susceptibility genes for a variety of complex disorders, has begun to implicate specific genes for bipolar disorder (DGKH, CACNA1C, ANK3). The polygenicity of the disorder means that very large samples will be needed to detect the modest effect loci that likely contribute to bipolar disorder. Detailed genetic dissection of the disorder may provide novel targets (both pharmacologic and psychosocial) for intervention. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Neurosciences

Human Placenta Derived Mesenchymal Stem Cells Transplantation Reducing Cellular Apoptosis in Hypoxic-Ischemic Neonatal Rats by Down-Regulating Semaphorin 3A/Neuropilin-1

Yang He, Jun Tang, Meng Zhang, Junjie Ying, Dezhi Mu

Summary: This study investigated the protective effects and mechanisms of human placenta derived mesenchymal stem cells (hPMSCs) transplantation in a rat model of hypoxic-ischemic encephalopathy (HIE). The results showed that hPMSCs transplantation reduced apoptosis and improved long-term neurological prognosis. Furthermore, the downregulation of Sema 3A/NRP-1 expression and activation of the PI3K/Akt/mTOR signaling pathway played a key role in the protective effects of hPMSCs.

NEUROSCIENCE (2024)

Article Neurosciences

Probing the Neurophysiology of Temporal Sensitivity in the Somatosensory System Using the Mismatch Negativity (MMN) Sensory Memory Paradigm

Emily L. Isenstein, Edward G. Freedman, Jiayi Xu, Ian A. DeAndrea-Lazarus, John J. Foxe

Summary: This study evaluated electrophysiological discrimination of parametric somatosensory stimuli in healthy young adults to understand how the brain processes the duration of tactile information. The results showed that participants did not electrophysiologically discriminate between 100 and 115 ms, but they exhibited distinct electrophysiological responses when the deviant stimuli were 130, 145, and 160 ms. These findings contribute to a better understanding of tactile sensitivity in different clinical conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A2A Receptors

Juliana R. Souza, Ludmila Lima-Silveira, Daniela Accorsi-Mendonca, Benedito H. Machado

Summary: This study demonstrates that A2A receptors play a crucial role in modulating synaptic transmission in the NTS neurons and are required for the enhancement of glutamatergic transmission observed under short-term sustained hypoxia conditions.

NEUROSCIENCE (2024)

Article Neurosciences

Correlation Between Cued Fear Memory Retrieval and Oscillatory Network Inhibition in the Amygdala Is Disrupted by Acute REM Sleep Deprivation

Miki Hashizume, Rina Ito, Rie Suge, Yasushi Hojo, Gen Murakami, Takayuki Murakoshi

Summary: The basolateral amygdaloid complex (BLA) is closely involved in the formation of emotional memories, including both aversive memory and contextual fear memory. Acute sleep deprivation (SD) disrupts the acquisition of tone-associated fear memory in juvenile rats, but has no significant effect on contextual fear memory. Slow network oscillation in the amygdala contributes to the formation of amygdala-dependent fear memory in relation to sleep.

NEUROSCIENCE (2024)

Article Neurosciences

Enhanced Gasdermin-E-mediated Pyroptosis in Alzheimer's Disease

Qunxian Wang, Shipeng Guo, Dongjie Hu, Xiangjun Dong, Zijun Meng, Yanshuang Jiang, Zijuan Feng, Weihui Zhou, Weihong Song

Summary: GSDME plays a crucial role in the pathogenesis of Alzheimer's disease by regulating the switch from apoptosis to pyroptosis and participating in neuroinflammatory response. Knockdown of GSDME has been shown to improve cognitive impairments, indicating that GSDME could be a therapeutic target for Alzheimer's disease.

NEUROSCIENCE (2024)