4.7 Article

SDF-1α/CXCL12 enhances GABA and glutamate synaptic activity at serotonin neurons in the rat dorsal raphe nucleus

期刊

NEUROPHARMACOLOGY
卷 58, 期 2, 页码 501-514

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2009.08.022

关键词

Chemokine; 5-HT; GABA; Glutamate; Electrophysiology; Immunohistochemistry; Dorsal raphe nucleus

资金

  1. NIH [20126, 06650, 13429]
  2. Pennsylvania Health Research Formula Fund

向作者/读者索取更多资源

The serotonin (5-hydroxytryptamine; 5-HT) system has a well-characterized role in depression. Recent reports describe comorbidities of mood-immune disorders, suggesting an immunological component may contribute to the pathogenesis of depression as well. Chemokines, immune proteins which mediate leukocyte trafficking, and their receptors are widely distributed in the brain, mediate neuronal patterning, and modulate various neuropathologies. The purpose of this study was to investigate the neuroanatomical relationship and functional impact of the chemokine stromal cell-derived factor-1 alpha/CXCL12 and its receptor, CXCR4, on the serotonin dorsal raphe nucleus (DRN) system in the rat using anatomical and electrophysiological techniques. Immunohistochemical analysis indicates that over 70% of 5-HT neurons colocalize with CXCL12 and CXCR4. At a subcellular level, CXCL12 localizes throughout the cytoplasm whereas CXCR4 concentrates to the outer membrane and processes of 5-HT neurons. CXCL12 and CXCR4 also colocalize on individual DRN cells. Furthermore, electrophysiological studies demonstrate CXCL12 depolarization of 5-HT neurons indirectly via glutamate synaptic inputs. CXCL12 also enhances the frequency of spontaneous inhibitory and excitatory postsynaptic cur-rents (slPSC and sEPSC). CXCL12 concentration-dependently increases evoked IPSC amplitude and decreases evoked IPSC paired-pulse ratio selectively in 5-HT neurons, effects blocked by the CXCR4 antagonist AMD3100. These data indicate presynaptic enhancement of GABA and glutamate release at 5-HT DRN neurons by CXCL12. Immunohistochemical analysis further shows CXCR4 localization to DRN GABA neurons, providing an anatomical basis for CXCL12 effects on GABA release. Thus, CXCL12 indirectly modulates 5-HT neurotransmission via GABA and glutamate synaptic afferents. Future therapies targeting CXCL12 and other chemokines may treat serotonin related mood disorders, particularly depression experienced by immune-compromised individuals. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Correction Neurosciences

'The MK2 cascade regulates mGluR-dependent synaptic plasticity and reversal learning' (vol 155, pg 121, 2019)

Lucia Privitera, Ellen L. Hogg, Matthias Gaestel, Mark J. Wall, Sonia A. L. Correa

NEUROPHARMACOLOGY (2024)

Article Neurosciences

CREB-induced LINC00473 promotes chemoresistance to TMZ in glioblastoma by regulating O6-methylguanine-DNA-methyltransferase expression via CEBPα binding

Li-Ya Jiang, Guan-Hao Wang, Jing-Jiao Xu, Xiao-Li Li, Xiao-Yan Lin, Xiang Fang, Hong-Xu Zhang, Mei Feng, Chun-Ming Jiang

Summary: This study reveals the importance of LINC00473 in regulating temozolomide (TMZ) resistance in glioblastoma (GB) and its potential mechanism. By regulating the expression of CEBP alpha and MGMT, LINC00473 promotes the formation of chemoresistance. Furthermore, LINC00473 can transfer chemoresistance to adjacent sensitive cells through exosomes.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Mitochondrial malfunction mediates impaired cholinergic Ca2+signalling and submandibular salivary gland dysfunction in diabetes

Olga Kopach, Tetyana Pivneva, Nataliya Fedirko, Nana Voitenko

Summary: This study found that diabetic animals exhibit severe xerostomia characterized by reduced saliva flow rate, diminished total protein content, and decreased amylase activity. The impaired saliva production in diabetes is associated with reduced and delayed intracellular Ca2+ signals in submandibular acinar cells, caused by malfunctioning mitochondria. Targeting malfunctioning mitochondria may be a potential strategy for the treatment of diabetic xerostomia.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Non-consummatory behavior signals predict aversion-resistant alcohol drinking in head-fixed mice

Nicholas M. Timme, Cherish E. Ardinger, Seth D. C. Weir, Rachel Zelaya-Escobar, Rachel Kruger, Christopher C. Lapish

Summary: This study aimed to assess aversion-resistant drinking behavior in head-fixed mice and explore the relationship between non-consummatory behaviors and aversion-resistant drinking. The results showed that head-fixed mice exhibited heterogenous levels of aversion-resistant drinking and non-consummatory behaviors were related to the intensity of this behavior.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Daily methocinnamox treatment dose-dependently attenuates fentanyl self-administration in rhesus monkeys

David R. Maguire, Charles P. France

Summary: Methocinnamox (MCAM) is a novel, long-acting opioid receptor antagonist that effectively decreases fentanyl self-administration and prevents opioid overdose in monkeys. The study demonstrates the potential therapeutic utility of MCAM in the treatment of opioid use disorder.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Ventral hippocampus is more sensitive to fluoxetine-induced changes in extracellular 5-HT concentration, membrane 5-HT transporter level and immobility times

Xiang Li, Dan Feng, Shenglu Ma, Mingxing Li, Shulei Zhao, Man Tang

Summary: This study investigated the effects of fluoxetine on neurochemical, neurobiological, and neurobehavioral changes in different subregions of the hippocampus. The results showed that fluoxetine increased dialysate 5-HT, decreased membrane 5-HTT protein, and increased cytoplasmic fraction. Additionally, fluoxetine reduced immobility times in behavioral tests, with greater effects observed in the ventral subregion compared to the dorsal subregion.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Molecular mechanisms of cholinergic neurotransmission in visceral smooth muscles with a focus on receptor-operated TRPC4 channel and impairment of gastrointestinal motility by general anaesthetics and anxiolytics

Alexander V. Zholos, Mariia I. Melnyk, Dariia O. Dryn

Summary: Acetylcholine is an important neurotransmitter in visceral smooth muscles, activating M2 and M3 muscarinic receptors to cause smooth muscle excitation and contraction. This review focuses on the cellular and molecular mechanisms underlying acetylcholine-induced depolarisation and smooth muscle contraction, as well as the effects of anticholinergic drugs on gastrointestinal motility. The knowledge gained from recent studies has greatly expanded our understanding of these processes.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Methylone produces antidepressant-relevant actions and prosocial effects

Zhenlong Li, Hsien-Yu Peng, Chau-Shoun Lee, Tzer-Bin Lin, Ming-Chun Hsieh, Cheng-Yuan Lai, Han-Fang Wu, Lih-Chyang Chen, Mei-Ci Chen, Dylan Chou

Summary: Methylone shows significant efficacy in treating depression and social deficits, making it an ideal candidate for anti-depressant medication.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Fluoroethylnormemantine (FENM) shows synergistic protection in combination with a sigma-1 receptor agonist in a mouse model of Alzheimer's disease

Aline Freyssin, Allison Carles, Sarra Guehairia, Gilles Rubinstenn, Tangui Maurice

Summary: This study explores the potential of combining FENM and S1R agonists in the treatment of Alzheimer's disease. The results showed that most FENM-based combinations can protect against learning deficits caused by A beta 25-35, with better efficacy in short-term memory.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Sex-dependent effect of inflammatory pain on negative affective states is prevented by kappa opioid receptors blockade in the nucleus accumbens shell

J. D. Lorente, J. Cuitavi, L. Rullo, S. Candeletti, P. Romualdi, L. Hipolito

Summary: This study analyzed the effects of pain on negative affect in different sexes and time courses, as well as the involvement of the dynorphinergic and corticotropin releasing factor systems in these pain-related behaviors. The results showed sex and time-dependent anxiety- and anhedonia-like behaviors induced by pain in female rats. The recruitment of KOR/DYN in the NAc was identified as a key neurological substrate mediating pain-induced behavioral alterations.

NEUROPHARMACOLOGY (2024)

Article Neurosciences

Intranasal oxytocin alleviates comorbid depressive symptoms in neuropathic pain via elevating hippocampal BDNF production in both female and male mice

Rongjun Liu, Daofan Sun, Xiuzhong Xing, Qingge Chen, Bo Lu, Bo Meng, Hui Yuan, Lan Mo, Liufang Sheng, Jinwei Zheng, Qiusheng Wang, Junping Chen, Xiaowei Chen

Summary: The coexistence of pain and depression is frequently observed in patients with chronic pain and depression. Oxytocin, a neuropeptide, has been reported to relieve chronic pain and depressive symptoms. This study investigated the effect of intranasal oxytocin on neuropathic pain and comorbid depressive symptoms, and found that oxytocin attenuated depression-like behavior but did not alleviate mechanical hyperalgesia. The results suggest that intranasal oxytocin may have the potential to treat depressive symptoms in neuropathic pain patients.

NEUROPHARMACOLOGY (2024)