4.5 Article

Chronic relapsing experimental allergic encephalomyelitis (CREAE) in plasminogen activator inhibitor-1 knockout mice: the effect of fibrinolysis during neuroinflammation

期刊

NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY
卷 34, 期 2, 页码 216-230

出版社

WILEY
DOI: 10.1111/j.1365-2990.2007.00889.x

关键词

experimental allergic encephalomyelitis; fibrinolysis; multiple sclerosis; plasminogen activator inhibitor-1; plasminogen

资金

  1. Multiple Sclerosis Society [835, 541] Funding Source: Medline

向作者/读者索取更多资源

During neuroinflammation in multiple sclerosis (MS) fibrinogen, not normally present in the brain or spinal cord, enters the central nervous system through a compromised blood-brain barrier. Fibrin deposited on axons is ineffectively removed by tissue plasminogen activator (tPA), a key contributory factor being the upregulation of plasminogen activator inhibitor-1 (PAI-1). Aims: This study investigated the role of PAI-1 during experimental neuroinflammatory disease. Methods: Chronic relapsing experimental allergic encephalomyelitis (CREAE), a model of MS, was induced with spinal cord homogenate in PAI-1 knockout (PAI-1(-/-)) and wild type (WT) mice, backcrossed onto the Biozzi background. Results: Disease incidence and clinical severity were reduced in PAI-1(-/-) mice, with animals developing clinical signs significantly later than WTs. Clinical relapses were absent in PAI-1(-/-) mice and the subsequent reduction in neuroinflammation was coupled with a higher capacity for fibrinolysis in spinal cord samples from PAI-1(-/-) mice, in association with increased tPA activity. Axonal damage was less apparent in PAI-1(-/-) mice than in WTs, implicating fibrin in both inflammatory and degenerative events during CREAE. Conclusions: PAI-1 is a potential target for therapy in neuroinflammatory degenerative diseases, allowing effective fibrin removal and potentially reducing relapse rate and axonal damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据