4.8 Article

Hyper-SUMOylation of the Kv7 Potassium Channel Diminishes the M-Current Leading to Seizures and Sudden Death

期刊

NEURON
卷 83, 期 5, 页码 1159-1171

出版社

CELL PRESS
DOI: 10.1016/j.neuron.2014.07.042

关键词

-

资金

  1. McNair Medical Foundation [NS29709, NS0769, HL077400]
  2. National Natural Science Foundation of China [91019021]

向作者/读者索取更多资源

Sudden unexplained death in epilepsy (SUDEP) is the most common cause of premature mortality in epilepsy and was linked to mutations in ion channels; however, genes within the channel protein interactome might also represent pathogenic candidates. Here we show that mice with partial deficiency of Sentrin/SUMO-specific protease 2 (SENP2) develop spontaneous seizures and sudden death. SENP2 is highly enriched in the hippocampus, often the focus of epileptic seizures. SENP2 deficiency results in hyper-SUMOylation of multiple potassium channels known to regulate neuronal excitability. We demonstrate that the depolarizing M-current conducted by Kv7 channel is significantly diminished in SENP2-deficient hippocampal CA3 neurons, primarily responsible for neuronal hyperexcitability. Following seizures, SENP2-deficient mice develop atrioventricular conduction blocks and cardiac asystole. Both seizures and cardiac conduction blocks can be prevented by retigabine, a Kv7 channel opener. Thus, we uncover a disease-causing role for hyper-SUMOylation in the nervous system and establish an animal model for SUDEP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据