4.7 Article

Evaluating the effects of systemic low frequency oscillations measured in the periphery on the independent component analysis results of resting state networks

期刊

NEUROIMAGE
卷 76, 期 1, 页码 202-215

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2013.03.019

关键词

Resting state networks; Independent component analysis; Low frequency oscillation; Near infrared spectroscopy; BOLD fMRI; Physiological noise

资金

  1. National Institutes of Health [T32 DA015036, K25 DA031769, R21 DA027877, K01 DA023659]

向作者/读者索取更多资源

Independent component analysis (ICA) is widely used in resting state functional connectivity studies. ICA is a data-driven method, which uses no a priori anatomical or functional assumptions. However, as a result, it still relies on the user to distinguish the independent components (ICs) corresponding to neuronal activation, peripherally originating signals (without directly attributable neuronal origin, such as respiration, cardiac pulsation and Mayer wave), and acquisition artifacts. In this concurrent near infrared spectroscopy (NIRS)/functional MRI (fMRI) resting state study, we developed a method to systematically and quantitatively identify the ICs that show strong contributions from signals originating in the periphery. We applied group ICA (MELODIC from FSL) to the resting state data of 10 healthy participants. The systemic low frequency oscillation (LFO) detected simultaneously at each participant's fingertip by NIRS was used as a regressor to correlate with every subject-specific IC time course. The ICs that had high correlation with the systemic LFO were those closely associated with previously described sensorimotor, visual, and auditory networks. The ICs associated with the default mode and frontoparietal networks were less affected by the peripheral signals. The consistency and reproducibility of the results were evaluated using bootstrapping. This result demonstrates that systemic, low frequency oscillations in hemodynamic properties overlay the time courses of many spatial patterns identified in ICA analyses, which complicates the detection and interpretation of connectivity in these regions of the brain. (C) 2013 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据