4.5 Article

Copper export from cultured astrocytes

期刊

NEUROCHEMISTRY INTERNATIONAL
卷 60, 期 3, 页码 292-300

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuint.2011.12.012

关键词

ATP7A; Brain; Metal toxicity; Transport

向作者/读者索取更多资源

Copper is an essential trace metal that is required as a catalytic co-factor or a structural component of several important enzymes. However, since excess of copper can also harm cells due to its potential to catalyse the generation of toxic reactive oxygen species, transport of copper and the cellular copper content are tightly regulated. Astrocytes are known to efficiently take up copper ions, but it was not known whether these cells are also able to export copper. Treatment of astrocyte-rich primary cultures for 24 h with copper chloride caused a concentration-dependent increase in the specific cellular copper content. During further 24 h incubation in the absence of copper chloride, the copper-loaded astrocytes remained viable and released up to 45% of the accumulated copper. The rate of copper export was proportional to the amount of cellular copper, was almost completely prevented by lowering the incubation temperature to 4 degrees C and was partly prevented by the endocytosis inhibitor amiloride. Copper export is most likely mediated by the copper ATPase ATP7A, since this transporter is expressed in astrocyte cultures and its cellular location is strongly affected by the absence or the presence of extracellular copper. The potential of cultured astrocytes to export copper suggests that astrocytes provide neighbouring cells in brain with this essential trace element. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据