4.7 Article

The abolishment of anesthesia-induced cognitive impairment by timely protection of mitochondria in the developing rat brain: The importance of free oxygen radicals and mitochondrial integrity

期刊

NEUROBIOLOGY OF DISEASE
卷 45, 期 3, 页码 1031-1041

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2011.12.022

关键词

Isoflurane; Lipid peroxidation; Reactive oxygen species; EUK-134; Pramipexole; Learning/memory

资金

  1. NIH/NICHD [HD44517-S]
  2. Harold Carron endowment
  3. John E. Fogarty Award [TW007423-128322]
  4. [NIH/NICHDHD44517]

向作者/读者索取更多资源

Early exposure to general anesthesia (GA) causes developmental neuroapoptosis in the mammalian brain and long-term cognitive impairment. Recent evidence suggests that GA also causes functional and morphological impairment of the immature neuronal mitochondria. Injured mitochondria could be a significant source of reactive oxygen species (ROS), which, if not scavenged in timely fashion, may cause excessive lipid peroxidation and damage of cellular membranes. We examined whether early exposure to GA results in ROS upregulation and whether mitochondrial protection and ROS scavenging prevent GA-induced pathomorphological and behavioral impairments. We exposed 7-day-old rats to GA with or without either EUK-134, a synthetic ROS scavenger, or R(+) pramipexole (PPX), a synthetic aminobenzothiazol derivative that restores mitochondrial integrity. We found that GA causes extensive ROS upregulation and lipid peroxidation, as well as mitochondrial injury and neuronal loss in the subiculum. As compared to rats given only GA, those also given PPX or EUK-134 had significantly downregulated lipid peroxidation, preserved mitochondrial integrity, and significantly less neuronal loss. The subiculum is highly intertwined with the hippocampal CA1 region, anterior thalamic nuclei, and both entorhinal and cingulate cortices; hence, it is important in cognitive development. We found that PPX or EUK-134 co-treatment completely prevented GA-induced cognitive impairment. Because mitochondria are vulnerable to GA-induced developmental neurotoxicity, they could be an important therapeutic target for adjuvant therapy aimed at improving the safety of commonly used GAs. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据