4.7 Article

Glucocorticoid receptor stimulation and the regulation of neonatal cerebellar neural progenitor cell apoptosis

期刊

NEUROBIOLOGY OF DISEASE
卷 43, 期 2, 页码 356-363

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2011.04.004

关键词

Apoptosis; Neural progenitor cell; Cerebellum; Glucocorticoid; Dexamethasone; Betamethasone; Bronchopulmonary dysplasia; Chronic lung disease; Premature birth; Neurodevelopment

资金

  1. NIH [MH083046, HD062171, ES012443, HD055365]

向作者/读者索取更多资源

Glucocorticoids are used to treat respiratory dysfunction associated with premature birth but have been shown to cause neurodevelopmental deficits when used therapeutically. Recently, we established that acute glucocorticoid exposure at clinically relevant doses produces neural progenitor cell apoptosis in the external granule layer of the developing mouse cerebellum and permanent decreases in the number of cerebellar neurons. As the cerebellum naturally matures and neurogenesis is no longer needed, the external granule layer decreases proliferation and permanently disappears during the second week of life. At this same time, corticosterone (the endogenous rodent glucocorticoid) release increases and a glucocorticoid-metabolizing enzyme that protects the external granule layer against glucocorticoid receptor stimulation (11 beta-Hydroxysteroid-Dehydrogenase-Type 2; HSD2) naturally disappears. Here we show that HSD2 inhibition and raising corticosterone to adult physiological levels both can independently increase neural progenitor cell apoptosis in the neonatal mouse. Conversely, glucocorticoid receptor antagonism decreases natural physiological apoptosis in this same progenitor cell population suggesting that endogenous glucocorticoid stimulation may regulate apoptosis in the external granule layer. We also found that glucocorticoids which HSD2 can effectively metabolize generate less external granule layer apoptosis than glucocorticoids this enzyme is ineffective at breaking down. This finding may explain why glucocorticoids that this enzyme can metabolize are clinically effective at treating respiratory dysfunction yet seem to produce no neurodevelopmental deficits. Finally, we demonstrate that both acute and chronic glucocorticoid exposures produce external granule layer apoptosis but without appropriate control groups this effect becomes masked. These results are discussed in terms of their implications for glucocorticoid therapy and neurodevelopment during the perinatal period. (C) 2011 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据