4.6 Article

Finite element analysis on solar energy harvesting using ferroelectric polymer

期刊

SOLAR ENERGY
卷 115, 期 -, 页码 722-732

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2015.03.029

关键词

Pyroelectric; Ferroelectric; Olsen cycle; Energy harvesting

资金

  1. Indian National Science Academy (INSA), New Delhi
  2. Department of Science and Technology, (DST), New Delhi, under INSPIRE faculty award [ENG-01]

向作者/读者索取更多资源

Solar energy harvesting through pyroelectric effect has been under the scrutiny of researchers since the past few years. However, the low energy density coupled with requirement of rapid temperature fluctuations has hindered any successful commercial ventures in this field. This study is an attempt towards eliminating these drawbacks associated with pyroelectric energy generation using ferroelectric polymers. Langmuir-Blodgett Polyvinylidene difluoride copolymer-Trifluoroethylene-Chlorofluoroethylene P(VDF-TrFE-CFE) thin films were used in conjunction with pyroelectric effect and forced cooling to simultaneously increase energy and power density. In this regard, a two faceted approach of linear pyroelectric harvesting and harvesting through Ericsson cycle have been analyzed and compared. The models for the same have been developed and analyzed using finite-element method. Two separate cases of air cooling and water cooling were investigated. Peak values of power density for water cooling and air cooling processes (direct pyroelectric effect) are found to be 0.437 mu W/cm(3) and 0.2 mu W/cm(3), respectively. These values are obtained at optimized value of load resistance and load capacitance (R-L = 7 M Omega and C-L = 2 mu F for water cooling while R-L = 14 M Omega and C-L = 2 mu F for air cooling). The maximum values of power density that can be obtained from water and air cooling process are 19.65 mW/cm(3) and 16.35 mW/cm(3) (using Ericsson cycle) at 0.013 and 0.011 Hz frequency, respectively. It was also observed that water cooling is more efficient than air cooling for energy harvesting. This study can lead to growth in the field of solar energy harvesting using pyroelectric effect. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
Article Energy & Fuels

Machine learning-aided discovery of bismuth-based transition metal oxide double perovskites for solar cell applications

Siddharth Sradhasagar, Omkar Subhasish Khuntia, Srikanta Biswal, Sougat Purohit, Amritendu Roy

Summary: In this study, machine learning models were developed to predict the bandgap and its character of double perovskite materials, with LGBMRegressor and XGBClassifier models identified as the best predictors. These models were further employed to predict the bandgap of novel bismuth-based transition metal oxide double perovskites, showing high accuracy, especially in the range of 1.2-1.8 eV.

SOLAR ENERGY (2024)

Article Energy & Fuels

Multi-objective optimizations of solar receiver based on deep learning strategy in different application scenarios

Wei Shuai, Haoran Xu, Baoyang Luo, Yihui Huang, Dong Chen, Peiwang Zhu, Gang Xiao

Summary: In this study, a hybrid model based on numerical simulation and deep learning is proposed for the optimization and operation of solar receivers. By applying the model to different application scenarios and considering multiple performance objectives, small errors are achieved and optimal structure parameters and heliostat scales are identified. This approach is not only applicable to gas turbines but also heating systems.

SOLAR ENERGY (2024)

Article Energy & Fuels

An accurate prediction of electronic structure, mechanical stability and optical response of BaCuF3 fluoroperovskite for solar cell application

Mubashar Ali, Zunaira Bibi, M. W. Younis, Muhammad Mubashir, Muqaddas Iqbal, Muhammad Usman Ali, Muhammad Asif Iqbal

Summary: This study investigates the structural, mechanical, and optoelectronic properties of the BaCuF3 fluoroperovskite using the first-principles modelling approach. The stability and characteristics of different cubic structures of BaCuF3 are evaluated, and the alpha-BaCuF3 and beta-BaCuF3 compounds are found to be mechanically stable with favorable optical properties for solar cells and high-frequency UV applications.

SOLAR ENERGY (2024)

Article Energy & Fuels

Efficient laboratory perovskite solar cell recycling with a one-step chemical treatment and recovery of ITO-coated glass substrates

Dong Le Khac, Shahariar Chowdhury, Asmaa Soheil Najm, Montri Luengchavanon, Araa mebdir Holi, Mohammad Shah Jamal, Chin Hua Chia, Kuaanan Techato, Vidhya Selvanathan

Summary: A novel recycling system is proposed in this study to decompose and reclaim the constituent materials of organic-inorganic perovskite solar cells (PSCs). By utilizing a one-step solution process extraction approach, the chemical composition of each layer is successfully preserved, enabling their potential reuse. The proposed recycling technique helps mitigate pollution risks, minimize waste generation, and reduce recycling costs.

SOLAR ENERGY (2024)

Article Energy & Fuels

A compound fault diagnosis model for photovoltaic array based on 1D VoVNet-SVDD by considering unknown faults

Peijie Lin, Feng Guo, Xiaoyang Lu, Qianying Zheng, Shuying Cheng, Yaohai Lin, Zhicong Chen, Lijun Wu, Zhuang Qian

Summary: This paper proposes an open-set fault diagnosis model for PV arrays based on 1D VoVNet-SVDD. The model accurately diagnoses various types of faults and is capable of identifying unknown fault types.

SOLAR ENERGY (2024)