4.6 Article

Differentiating treatment-induced necrosis from recurrent/progressive brain tumor using nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion

期刊

NEURO-ONCOLOGY
卷 13, 期 9, 页码 1037-1046

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/neuonc/nor075

关键词

DCE-MRI; MR perfusion; recurrent tumor; semiquantitative indices; treatment-induced necrosis

资金

  1. NCI NIH HHS [R01 CA122031] Funding Source: Medline
  2. NINDS NIH HHS [R21 NS058589] Funding Source: Medline

向作者/读者索取更多资源

Differentiating treatment-induced necrosis (TIN) from recurrent/progressive tumor (RPT) in brain tumor patients using conventional morphologic imaging features is a very challenging task. Functional imaging techniques also offer moderate success due to the complexity of the tissue microenvironment and the inherent limitation of the various modalities and techniques. The purpose of this retrospective study was to assess the utility of nonmodel-based semiquantitative indices derived from dynamic contrast-enhanced T1-weighted MR perfusion (DCET1MRP) in differentiating TIN from RPT. Twenty-nine patients with previously treated brain tumors who showed recurrent or progressive enhancing lesion on follow-up MRI underwent DCET1MRP. Another 8 patients with treatment-naive high-grade gliomas who also underwent DCET1MRP were included as the control group. Semiquantitative indices derived from DCET1MRP included maximum slope of enhancement in initial vascular phase (MSIVP), normalized MSIVP (nMSIVP), normalized slope of delayed equilibrium phase (nSDEP), and initial area under the time-intensity curve (IAUC) at 60 and 120 s (IAUC(60) and IAUC(120)) obtained from the enhancement curve. There was a statistically significant difference between the 2 groups (P < .01), with the RPT group showing higher MSIVP (15.78 vs 8.06), nMSIVP (0.046 vs 0.028), nIAUC(60) (33.07 vs 6.44), and nIAUC(120) (80.14 vs 65.55) compared with the TIN group. nSDEP was significantly lower in the RPT group (7.20 x 10(-5) vs 15.35 x 10(-5)) compared with the TIN group. Analysis of the receiver-operating-characteristic curve showed nMSIVP to be the best single predictor of RPT, with very high (95%) sensitivity and high (78%) specificity. Thus, nonmodel-based semiquantitative indices derived from DCET1MRP that are relatively easy to derive and do not require a complex model-based approach may aid in differentiating RPT from TIN and can be used as robust noninvasive imaging biomarkers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据