4.7 Article

An iterative ∈-optimal control scheme for a class of discrete-time nonlinear systems with unfixed initial state

期刊

NEURAL NETWORKS
卷 32, 期 -, 页码 236-244

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neunet.2012.02.027

关键词

Adaptive dynamic programming; Approximate dynamic programming; is an element of-optimal control; Finite horizon; Neural networks

资金

  1. National Natural Science Foundation of China [60904037, 60921061, 61034002]
  2. Beijing Natural Science Foundation [4102061]
  3. China Postdoctoral Science Foundation [201104162]

向作者/读者索取更多资源

In this paper, a finite horizon iterative adaptive dynamic programming (ADP) algorithm is proposed to solve the optimal control problem for a class of discrete-time nonlinear systems with unfixed initial state. A new is an element of-optimal control algorithm based on the iterative ADP approach is proposed that makes the performance index function iteratively converge to the greatest lower bound of all performance indices within an error is an element of in finite time. The convergence analysis of the proposed ADP algorithm in terms of performance index function and control policy is conducted. The optimal number of control steps can also be obtained by the proposed is an element of-optimal control algorithm for the unfixed initial state. Neural networks are used to approximate the performance index function, and compute the optimal control policy, respectively, for facilitating the implementation of the is an element of-optimal control algorithm. Finally, a simulation example is given to show the effectiveness of the proposed method. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Computer Science, Artificial Intelligence

A Novel Value Iteration Scheme With Adjustable Convergence Rate

Mingming Ha, Ding Wang, Derong Liu

Summary: In this article, a novel value iteration scheme is proposed, which introduces a relaxation factor and combines with other methods to accelerate and guarantee the convergence. The theoretical results and numerical examples demonstrate its fast convergence speed and stability.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2023)

Article Automation & Control Systems

Event-triggered robust control for multi-player nonzero-sum games with input constraints and mismatched uncertainties

Shunchao Zhang, Bo Zhao, Derong Liu, Cesare Alippi, Yongwei Zhang

Summary: In this article, an event-triggered robust control (ETRC) method is investigated for multi-player nonzero-sum games of continuous-time input constrained nonlinear systems with mismatched uncertainties. The method transforms the robust control problem into an optimal regulation problem by constructing an auxiliary system and designing an appropriate value function. A critic neural network (NN) is used to approximate the value function of each player and obtain control laws. The method reduces computational burden and communication bandwidth by updating the control laws when events occur. The effectiveness of the developed ETRC method is demonstrated through theoretical analysis and examples.

INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL (2023)

Article Computer Science, Artificial Intelligence

Event-triggered adaptive dynamic programming for decentralized tracking control of input constrained unknown nonlinear interconnected systems

Qiuye Wu, Bo Zhao, Derong Liu, Marios M. Polycarpou

Summary: This paper proposes an event-triggered adaptive dynamic programming method to solve the decentralized tracking control problem for input constrained unknown nonlinear interconnected systems. A neural-network-based local observer is established to reconstruct the system dynamics using local input-output data and desired trajectories. The DTC problem is transformed into an optimal control problem using a nonquadratic value function. The DTC policy is obtained by solving the local Hamilton-Jacobi-Bellman equation through the observer-critic architecture, with weights tuned by the experience replay technique. Simulation examples demonstrate the effectiveness of the proposed scheme.

NEURAL NETWORKS (2023)

Article Computer Science, Artificial Intelligence

Policy gradient adaptive dynamic programming for nonlinear discrete-time zero-sum games with unknown dynamics

Mingduo Lin, Bo Zhao, Derong Liu

Summary: A novel policy gradient (PG) adaptive dynamic programming method is proposed for nonlinear discrete-time zero-sum games with unknown dynamics. A policy iteration algorithm is used to approximate the Q-function and the control and disturbance policies using neural network approximators. The control and disturbance policies are then updated using the PG method based on the iterative Q-function. The experience replay technique is applied to improve training stability and data usage efficiency. Simulation results show the effectiveness of the proposed method.

SOFT COMPUTING (2023)

Article Computer Science, Artificial Intelligence

Neuro-Optimal Event-Triggered Impulsive Control for Stochastic Systems via ADP

Mingming Liang, Derong Liu

Summary: This article presents a novel neural-network-based optimal event-triggered impulsive control method. The proposed method utilizes a general-event-based impulsive transition matrix (GITM) to represent the evolving characteristics of all system states across impulsive actions. Through the developed event-triggered impulsive adaptive dynamic programming (ETIADP) algorithm and its high-efficiency version (HEIADP), the optimization problems for stochastic systems with event-triggered impulsive controls are addressed. The results show that the proposed methods can reduce computational and communication burdens and fulfill the desired goals.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2023)

Article Automation & Control Systems

Deep Learning-Based Trajectory Planning and Control for Autonomous Ground Vehicle Parking Maneuver

Runqi Chai, Derong Liu, Tianhao Liu, Antonios Tsourdos, Yuanqing Xia, Senchun Chai

Summary: This paper presents an integrated real-time trajectory planning and tracking control framework for autonomous ground vehicles (AGV) parking maneuver problems, utilizing deep neural networks and recurrent network structures. Two transfer learning strategies are applied to adapt the motion planner for different AGV types. Experimental studies demonstrate enhanced performance in fulfilling parking missions.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (2023)

Article Computer Science, Artificial Intelligence

Adaptive dynamic programming-based hierarchical decision-making of non-affine systems

Danyu Lin, Shan Xue, Derong Liu, Mingming Liang, Yonghua Wang

Summary: In this paper, a problem of multiplayer hierarchical decision-making for non-affine systems is solved using adaptive dynamic programming. The control dynamics are obtained and combined with the original system dynamics, transforming the non-affine multiplayer system into a general affine form. The hierarchical decision problem is modeled as a Stackelberg game, and a neural network is used to reconstruct the augmented system and approximate the value function. The feasibility and effectiveness of the algorithm are confirmed through simulation.

NEURAL NETWORKS (2023)

Article Computer Science, Artificial Intelligence

Fault tolerant control for a class of nonlinear systems with multiple faults using neuro-dynamic programming

Chujian Zeng, Bo Zhao, Derong Liu

Summary: This paper proposes a neuro-dynamic programming-based fault tolerant control scheme for a class of nonlinear systems, considering the occurrence of both actuator and sensor faults simultaneously. The scheme combines a descriptor observer with an adaptive observer to estimate system states and multiple faults. By employing a critic neural network, the approximate optimal control policy is obtained for the fault-free system. An FTC law is developed to suppress the influence of actuator faults by combining the estimations of actuator faults with the approximate optimal control policy. The stability of the closed-loop nonlinear system is analyzed using the Lyapunov stability theorem.

NEUROCOMPUTING (2023)

Article Automation & Control Systems

Adaptive Dynamic Programming-Based Event-Triggered Robust Control for Multiplayer Nonzero-Sum Games With Unknown Dynamics

Yongwei Zhang, Bo Zhao, Derong Liu, Shunchao Zhang

Summary: In this article, the event-triggered robust control problem of unknown multiplayer nonlinear systems with constrained inputs and uncertainties is investigated using adaptive dynamic programming. A neural network-based identifier is constructed to relax the requirement of system dynamics. By designing a nonquadratic value function, the stabilization problem is converted into a constrained optimal control problem. The approximate solution of the event-triggered Hamilton-Jacobi equation is obtained using a critic network with a novel weight updating law, and the Lyapunov stability theorem ensures that the multiplayer system is uniformly ultimately bounded.

IEEE TRANSACTIONS ON CYBERNETICS (2023)

Article Automation & Control Systems

An Efficient Impulsive Adaptive Dynamic Programming Algorithm for Stochastic Systems

Mingming Liang, Yonghua Wang, Derong Liu

Summary: In this study, a novel general impulsive transition matrix is defined to reveal the transition dynamics and probability distribution evolution patterns between impulsive events. Based on this matrix, policy iteration-based impulsive adaptive dynamic programming algorithms are developed to solve optimal impulsive control problems. The algorithms demonstrate convergence to the optimal impulsive performance index function and allow for optimization on computing devices with low memory spaces.

IEEE TRANSACTIONS ON CYBERNETICS (2023)

Proceedings Paper Automation & Control Systems

Data-Based Approximate Optimal Control for Unknown Nonaffine Systems via Dynamic Feedback

Jinquan Lin, Bo Zhao, Derong Liu

Summary: In this paper, an integral reinforcement learning (IRL)-based approximate optimal control (AOC) method is developed for unknown nonaffine systems using dynamic feedback. The optimal control policy for nonaffine systems cannot be explicitly expressed due to the unknown input gain matrix. Thus, a dynamic feedback signal is introduced to transform the nonaffine system into an augmented affine system. The AOC for unknown nonaffine systems is formulated by designing an appropriate value function for the augmented affine system, and the IRL method is adopted to derive the approximate solution of the Hamilton-Jacobi-Bellman equation.

2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS (2023)

Article Automation & Control Systems

Event-Triggered Local Control for Nonlinear Interconnected Systems Through Particle Swarm Optimization-Based Adaptive Dynamic Programming

Bo Zhao, Guang Shi, Derong Liu

Summary: This article investigates local control problems for nonlinear interconnected systems by using adaptive dynamic programming (ADP) with particle swarm optimization (PSO). It constructs a proper local value function and employs a local critic neural network to solve the local Hamilton-Jacobi-Bellman equation. The event-triggering mechanism is introduced to determine the sampling time instants and ensure asymptotic stability through Lyapunov stability analysis.

IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS (2023)

Article Automation & Control Systems

Liquid-Updating Impulsive Adaptive Dynamic Programming for Continuous Nonlinear Systems

Mingming Liang, Derong Liu

Summary: This article focuses on designing the optimal impulsive controller (IMC) of continuous-time nonlinear systems and proposes a new adaptive dynamic programming algorithm with high generality and feasibility. The introduced policy-improving mechanism makes the algorithm more flexible for memory-limited computing devices.

IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS (2023)

Article Automation & Control Systems

Safe Reinforcement Learning and Adaptive Optimal Control With Applications to Obstacle Avoidance Problem

Ke Wang, Chaoxu Mu, Zhen Ni, Derong Liu

Summary: This paper presents a novel composite obstacle avoidance control method that generates safe motion trajectories for autonomous systems in an adaptive manner. The method combines model-based policy iteration and state-following-based approximation in a safe reinforcement learning framework. The proposed learning-based controller achieves stable reaching of target points while maintaining a safe distance from obstacles. The effectiveness of the method is demonstrated through simulations and comparisons with other avoidance control methods.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING (2023)

Article Computer Science, Artificial Intelligence

Adaptive Dynamic Programming-Based Cooperative Motion/Force Control for Modular Reconfigurable Manipulators: A Joint Task Assignment Approach

Bo Zhao, Yongwei Zhang, Derong Liu

Summary: This article presents a cooperative motion/force control scheme for modular reconfigurable manipulators (MRMs) based on adaptive dynamic programming (ADP). The dynamic model of the entire MRM system is treated as a set of joint modules interconnected by coupling torque, and the Jacobian matrix is mapped into each joint. A neural network is used as a robust decentralized observer, and an improved local value function is constructed for each joint module. The control scheme is achieved by using force feedback compensation and is proven to be uniformly ultimately bounded through Lyapunov stability analysis.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS (2023)

Article Computer Science, Artificial Intelligence

Reduced-complexity Convolutional Neural Network in the compressed domain

Hamdan Abdellatef, Lina J. Karam

Summary: This paper proposes performing the learning and inference processes in the compressed domain to reduce computational complexity and improve speed of neural networks. Experimental results show that modified ResNet-50 in the compressed domain is 70% faster than traditional spatial-based ResNet-50 while maintaining similar accuracy. Additionally, a preprocessing step with partial encoding is suggested to improve resilience to distortions caused by low-quality encoded images. Training a network with highly compressed data can achieve good classification accuracy with significantly reduced storage requirements.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Theoretical limits on the speed of learning inverse models explain the rate of adaptation in arm reaching tasks

Victor R. Barradas, Yasuharu Koike, Nicolas Schweighofer

Summary: Inverse models are essential for human motor learning as they map desired actions to motor commands. The shape of the error surface and the distribution of targets in a task play a crucial role in determining the speed of learning.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Learning a robust foundation model against clean-label data poisoning attacks at downstream tasks

Ting Zhou, Hanshu Yan, Jingfeng Zhang, Lei Liu, Bo Han

Summary: We propose a defense strategy that reduces the success rate of data poisoning attacks in downstream tasks by pre-training a robust foundation model.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

AdaSAM: Boosting sharpness-aware minimization with adaptive learning rate and momentum for neural networks

Hao Sun, Li Shen, Qihuang Zhong, Liang Ding, Shixiang Chen, Jingwei Sun, Jing Li, Guangzhong Sun, Dacheng Tao

Summary: In this paper, the convergence rate of AdaSAM in the stochastic non-convex setting is analyzed. Theoretical proof shows that AdaSAM has a linear speedup property and decouples the stochastic gradient steps with the adaptive learning rate and perturbed gradient. Experimental results demonstrate that AdaSAM outperforms other optimizers in terms of performance.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Grasping detection of dual manipulators based on Markov decision process with neural network

Juntong Yun, Du Jiang, Li Huang, Bo Tao, Shangchun Liao, Ying Liu, Xin Liu, Gongfa Li, Disi Chen, Baojia Chen

Summary: In this study, a dual manipulator grasping detection model based on the Markov decision process is proposed. By parameterizing the grasping detection model of dual manipulators using a cross entropy convolutional neural network and a full convolutional neural network, stable grasping of complex multiple objects is achieved. Robot grasping experiments were conducted to verify the feasibility and superiority of this method.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Asymmetric double networks mutual teaching for unsupervised person Re-identification

Miaohui Zhang, Kaifang Li, Jianxin Ma, Xile Wang

Summary: This paper proposes an unsupervised person re-identification (Re-ID) method that uses two asymmetric networks to generate pseudo-labels for each other by clustering and updates and optimizes the pseudo-labels through alternate training. It also designs similarity compensation and similarity suppression based on the camera ID of pedestrian images to optimize the similarity measure. Extensive experiments show that the proposed method achieves superior performance compared to state-of-the-art unsupervised person re-identification methods.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Low-variance Forward Gradients using Direct Feedback Alignment and momentum

Florian Bacho, Dominique Chu

Summary: This paper proposes a new approach called the Forward Direct Feedback Alignment algorithm for supervised learning in deep neural networks. By combining activity-perturbed forward gradients, direct feedback alignment, and momentum, this method achieves better performance and convergence speed compared to other local alternatives to backpropagation.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Maximum margin and global criterion based-recursive feature selection

Xiaojian Ding, Yi Li, Shilin Chen

Summary: This research paper addresses the limitations of recursive feature elimination (RFE) and its variants in high-dimensional feature selection tasks. The proposed algorithms, which introduce a novel feature ranking criterion and an optimal feature subset evaluation algorithm, outperform current state-of-the-art methods.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Mental image reconstruction from human brain activity: Neural decoding of mental imagery via deep neural network-based Bayesian estimation

Naoko Koide-Majima, Shinji Nishimoto, Kei Majima

Summary: Visual images observed by humans can be reconstructed from brain activity, and the visualization of arbitrary natural images from mental imagery has been achieved through an improved method. This study provides a unique tool for directly investigating the subjective contents of the brain.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Hierarchical attention network with progressive feature fusion for facial expression recognition

Huanjie Tao, Qianyue Duan

Summary: In this paper, a hierarchical attention network with progressive feature fusion is proposed for facial expression recognition (FER), addressing the challenges posed by pose variation, occlusions, and illumination variation. The model achieves enhanced performance by aggregating diverse features and progressively enhancing discriminative features.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

SLAPP: Subgraph-level attention-based performance prediction for deep learning models

Zhenyi Wang, Pengfei Yang, Linwei Hu, Bowen Zhang, Chengmin Lin, Wenkai Lv, Quan Wang

Summary: In the face of the complex landscape of deep learning, we propose a novel subgraph-level performance prediction method called SLAPP, which combines graph and operator features through an innovative graph neural network called EAGAT, providing accurate performance predictions. In addition, we introduce a mixed loss design with dynamic weight adjustment to improve predictive accuracy.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

LDCNet: Lightweight dynamic convolution network for laparoscopic procedures image segmentation

Yiyang Yin, Shuangling Luo, Jun Zhou, Liang Kang, Calvin Yu-Chian Chen

Summary: Medical image segmentation is crucial for modern healthcare systems, especially in reducing surgical risks and planning treatments. Transanal total mesorectal excision (TaTME) has become an important method for treating colon and rectum cancers. Real-time instance segmentation during TaTME surgeries can assist surgeons in minimizing risks. However, the dynamic variations in TaTME images pose challenges for accurate instance segmentation.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

start-stop points CenterNet for wideband signals detection and time-frequency localization in spectrum sensing

Teng Cheng, Lei Sun, Junning Zhang, Jinling Wang, Zhanyang Wei

Summary: This study proposes a scheme that combines the start-stop point signal features for wideband multi-signal detection, called Fast Spectrum-Size Self-Training network (FSSNet). By utilizing start-stop points to build the signal model, this method successfully solves the difficulty of existing deep learning methods in detecting discontinuous signals and achieves satisfactory detection speed.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Learning deep representation and discriminative features for clustering of multi-layer networks

Wenming Wu, Xiaoke Ma, Quan Wang, Maoguo Gong, Quanxue Gao

Summary: The layer-specific modules in multi-layer networks are critical for understanding the structure and function of the system. However, existing methods fail to accurately characterize and balance the connectivity and specificity of these modules. To address this issue, a joint learning graph clustering algorithm (DRDF) is proposed, which learns the deep representation and discriminative features of the multi-layer network, and balances the connectivity and specificity of the layer-specific modules through joint learning.

NEURAL NETWORKS (2024)

Article Computer Science, Artificial Intelligence

Boundary uncertainty aware network for automated polyp segmentation

Guanghui Yue, Guibin Zhuo, Weiqing Yan, Tianwei Zhou, Chang Tang, Peng Yang, Tianfu Wang

Summary: This paper proposes a novel boundary uncertainty aware network (BUNet) for precise and robust colorectal polyp segmentation. BUNet utilizes a pyramid vision transformer encoder to learn multi-scale features and incorporates a boundary exploration module (BEM) and a boundary uncertainty aware module (BUM) to handle boundary areas. Experimental results demonstrate that BUNet outperforms other methods in terms of performance and generalization ability.

NEURAL NETWORKS (2024)