3.9 Article

Expression and Activity of SGLT2 in Diabetes Induced by Streptozotocin: Relationship with the Lipid Environment

期刊

NEPHRON PHYSIOLOGY
卷 112, 期 3, 页码 P45-P52

出版社

KARGER
DOI: 10.1159/000214214

关键词

-

资金

  1. UBACYT [B073, B074]

向作者/读者索取更多资源

Background/Aims: Diabetes mellitus may impact on the regulation of renal Na+-glucose cotransporter type 2 (SGLT2), however, previous studies have yielded conflicting results on the effects of streptozotocin (STZ)-induced diabetes on SGLT-mediated glucose transport. Methods: Diabetes was induced in male Wistar rats. The studies were performed at 3 (D3), 7 (D7) and 14 (D14) days after a single i.p. injection of STZ. SGLT2 activity was measured using alpha-C-14-methyl glucose uptake in brush-border vesicles (BBV) from renal cortex, and SGLT2 expression was assessed by immunoblotting. Phospholipids were quantified by a modification of Fiske-Subarow's method after being separated by thin-layer chromatography. Results: Glucose uptake was reduced in all groups of diabetic rats. SGLT2 expression decreased in D3 and D7. There was a decrease in sphingomyelin (SM) content and an increase in phosphatidylcholine (PC) content in BBV from D14 versus control, without differences in phosphatidylinositol (PI), phosphatidylserine (PS) and phosphatidylethanolamine (PE). Conclusion: The downregulation of SGLT2 activity during STZ-induced diabetes may be a protective mechanism to control the excess of circulating glucose and could be a consequence of a decrease in SGLT2 expression in D3 and D7, whereas altered activity of SGLT2 in D14 could be a consequence of changes in membrane lipid composition. However, we cannot discard the possibility that the decrease in SGLT2 activity could be due to a covalent modification of the active site of the protein. Copyright (C) 2009 S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据