4.6 Article

Effect of shape on the self-assembly of faceted patchy nanoplates with irregular shape into tiling patterns

期刊

SOFT MATTER
卷 11, 期 7, 页码 1386-1396

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4sm01612b

关键词

-

资金

  1. U.S. Army Research Office [W911NF-10-1-0518]
  2. Simons Foundation
  3. Assistant Secretary of Defense for Research and Engineering, U.S. Department of Defense [N00244-09-1-0062]

向作者/读者索取更多资源

Recent reports of the synthesis and assembly of faceted nanoplates with a wide range of shapes and composition motivates the possibility of a new class of two-dimensional materials with specific patterns targeted for a host of exciting properties. Yet, studies of how nanoplate shape controls their assembly knowledge necessary for their inverse design from target structures - has been performed for only a handful of systems. By constructing a general framework in which many known faceted nanoplates may be described in terms of four anisotropy dimensions, we discover design rules to guide future synthesis and assembly. We study via Monte Carlo simulations attractive polygons whose shape is altered systematically under the following four transformations: faceting, pinching, elongation and truncation. We report that (i) faceting leads to regular porous structures (ii) pinching stabilizes complex structures such as dodecagonal quasicrystals (iii) elongation leads to asymmetric phase behavior, where low and high aspect ratio nanoplates self-assemble completely different structures and (iv) low and high degrees of truncation transform a complex self-assembler into a disk-like assembler, providing design ideas that could lead to switchable structures. We provide important insight into how the shape and attractive interactions of a nanoplate can be exploited or designed to target specific classes of structures, including space-filling, porous, and complex tilings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据