4.8 Article

Continuous-variable quantum cryptography using two-way quantum communication

期刊

NATURE PHYSICS
卷 4, 期 9, 页码 726-730

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nphys1018

关键词

-

资金

  1. 6th European Community Framework Programme [MOIF-CT-2006-039703]
  2. W.M. Keck centre

向作者/读者索取更多资源

Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a 'hardware solution' for enhancing the security thresholds of these protocols. This is possible by extending themto two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据