4.8 Article

Fault weakening and earthquake instability by powder lubrication

期刊

NATURE
卷 467, 期 7314, 页码 452-U102

出版社

NATURE RESEARCH
DOI: 10.1038/nature09348

关键词

-

资金

  1. National Science Foundation [0732715]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [0732715] Funding Source: National Science Foundation

向作者/读者索取更多资源

Earthquake instability has long been attributed to fault weakening during accelerated slip(1), and a central question of earthquake physics is identifying the mechanisms that control this weakening(2). Even with much experimental effort(2-12), the weakening mechanisms have remained enigmatic. Here we present evidence for dynamic weakening of experimental faults that are sheared at velocities approaching earthquake slip rates. The experimental faults, which were made of room-dry, solid granite blocks, quickly wore to form a fine-grain rock powder known as gouge. At modest slip velocities of 10-60 mm s(-1), this newly formed gouge organized itself into a thin deforming layer that reduced the fault's strength by a factor of 2-3. After slip, the gouge rapidly 'aged' and the fault regained its strength in a matter of hours to days. Therefore, only newly formed gouge can weaken the experimental faults. Dynamic gouge formation is expected to be a common and effective mechanism of earthquake instability in the brittle crust as (1) gouge always forms during fault slip(5,10,12-20); (2) fault-gouge behaves similarly to industrial powder lubricants(21); (3) dynamic gouge formation explains various significant earthquake properties; and (4) gouge lubricant can form for a wide range of fault configurations, compositions and temperatures(15).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据