4.8 Article

Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions

期刊

NATURE
卷 457, 期 7226, 页码 174-178

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/nature07636

关键词

-

资金

  1. Conseil General de l'Essonne
  2. Engineering and Physical Sciences Research Council [EP/E048811/1, EP/D025532/1, EP/C002881/1] Funding Source: researchfish
  3. EPSRC [EP/E048811/1, EP/D025532/1] Funding Source: UKRI

向作者/读者索取更多资源

Semiconductor lasers based on two-dimensional photonic crystals(1,2) generally rely on an optically pumped central area, surrounded by un- pumped, and therefore absorbing, regions(3). This ideal configuration is lost when photonic- crystal lasers are electrically pumped, which is practically more attractive as an external laser source is not required. In this case, in order to avoid lateral spreading of the electrical current, the device active area must be physically defined by appropriate semiconductor processing. This creates an abrupt change in the complex dielectric constant at the device boundaries, especially in the case of lasers operating in the far- infrared, where the large emission wavelengths impose device thicknesses of several micrometres. Here we show that such abrupt boundary conditions can dramatically influence the operation of electrically pumped photonic- crystal lasers. By demonstrating a general technique to implement reflecting or absorbing boundaries, we produce evidence that whispering- gallery- like modes or true photonic- crystal states can be alternatively excited. We illustrate the power of this technique by fabricating photonic- crystal terahertz ( THz) semiconductor lasers, where the photonic crystal is implemented via the sole patterning of the device top metallization. Single- mode laser action is obtained in the 2.55-2.88 THz range, and the emission far field exhibits a small angular divergence, thus providing a solution for the quasi- total lack of directionality typical of THz semiconductor lasers based on metal - metal waveguides(4).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Engineering, Electrical & Electronic

Multilevel Non-Volatile Memristive Response in e-Textile

Suraj P. Khanna, Satish Singh, C. K. Suman, Nandan Kumar, Alok Dabi

Summary: Multilevel non-volatile resistive switching behavior is observed in electronic textile, displaying write-once-read-many (WORM) memory behavior and allowing conduction modulation using a remote current-bias write/input stimulus. Anisotropic current spreading in the textile can be utilized for selective memory writing and emulating neuron-like behavior. The textile also exhibits the reset WORM or ReWORM effect.

IEEE TRANSACTIONS ON ELECTRON DEVICES (2023)

Article Nanoscience & Nanotechnology

Low temperature deposition of vanadium dioxide on III-V semiconductors and integration on mid-infrared quantum cascade lasers

Laurent Boulley, Thomas Maroutian, Paul Goulain, Andrey Babichev, Anton Egorov, Lianhe Li, Edmund Linfield, Raffaele Colombelli, Adel Bousseksou

Summary: We demonstrate low temperature deposition conditions for VO2 phase change material that are compatible with III-V semiconductors used in optoelectronic applications. The VO2 coated thin films grown on GaAs exhibit a 50% change in optical reflectivity and a significant variation in electric conductivity between insulating and metallic states. We also study the functionalization of mid-infrared QCLs with VO2 layers to engineer their laser emission properties.

AIP ADVANCES (2023)

Article Chemistry, Multidisciplinary

Self-Induced Mode-Locking in Electrically Pumped Far-Infrared Random Lasers

Alessandra Di Gaspare, Valentino Pistore, Elisa Riccardi, Eva A. A. Pogna, Harvey E. Beere, David A. Ritchie, Lianhe Li, Alexander Giles Davies, Edmund H. Linfield, Andrea C. Ferrari, Miriam S. Vitiello

Summary: This study demonstrates mode-locking in surface-emitting electrically pumped random quantum cascade lasers at terahertz frequencies by exploiting the giant third-order nonlinearity of semiconductor heterostructure lasers and the nonlinear properties of graphene. Self-induced phase-coherence between naturally incoherent random modes and phase-locked random modes are achieved using lithographically patterning a multilayer graphene film or coupling a saturable absorber graphene reflector. This milestone in the physics of disordered systems paves the way for miniaturized, electrically pumped mode-locked light sources for various applications.

ADVANCED SCIENCE (2023)

Article Chemistry, Multidisciplinary

Real-Time Measure of the Lattice Temperature of a Semiconductor Heterostructure Laser via an On-Chip Integrated Graphene Thermometer

Leonardo Viti, Elisa Riccardi, Harvey E. Beere, David A. Ritchie, Miriam S. Vitiello

Summary: The on-chip integration of two-dimensional nanomaterials with terahertz quantum cascade lasers has led to wide spectral tuning, nonlinear high-harmonic generation, and pulse generation. In this study, a large area multilayer graphene (MLG) was transferred to a THz QCL to monitor its local lattice temperature during operation. The MLG's temperature dependence of electrical resistance was used to measure the local heating of the QCL chip. The results were validated through photoluminescence experiments. This integrated system provides a fast temperature sensor for THz QCLs and enables full electrical and thermal control on laser operation.

ACS NANO (2023)

Article Physics, Applied

High-power density, single plasmon, terahertz quantum cascade lasers via transverse mode control

C. Song, M. Salih, L. H. Li, J. Mangeney, J. Tignon, A. G. Davies, E. H. Linfield, S. Dhillon

Summary: By using thin metallic side-absorbers, researchers have successfully suppressed higher-order transverse modes in Terahertz quantum cascade lasers (THz QCLs), allowing the lasers to operate solely on the fundamental transverse mode without sacrificing high power outputs. This breakthrough opens up opportunities for investigating nonlinear THz physical phenomena using THz QCLs as pump sources.

APPLIED PHYSICS LETTERS (2023)

Letter Chemistry, Multidisciplinary

Formation of Artificial Fermi Surfaces with a Triangular Superlattice on a Conventional Two-Dimensional Electron Gas

Daisy Q. Wang, Zeb Krix, Oleg P. Sushkov, Ian Farrer, David A. . Ritchie, Alexander R. . Hamilton, Oleh Klochan

Summary: By imposing an external periodic electrostatic potential, the electronic properties of the confined electrons in a quantum well can be different from those in the host semiconductor. In this study, we fabricated and investigated a tunable triangular artificial lattice on a GaAs/AlGaAs heterostructure, where the band structure and Fermi surface can be transformed by altering a gate bias. Magnetotransport measurements revealed multiple quantum oscillations and commensurability oscillations due to electron scattering from the artificial lattice. Increasing the modulation strength revealed new commensurability oscillations caused by electron scattering from the artificial Fermi surface and triangular lattice. These results demonstrate the ability to form artificial two-dimensional crystals with designer electronic properties using low disorder gate-tunable lateral superlattices.

NANO LETTERS (2023)

Article Nanoscience & Nanotechnology

Time-resolved Coulomb collision of single electrons

J. D. Fletcher, W. Park, S. Ryu, P. See, J. P. Griffiths, G. A. C. Jones, I. Farrer, D. A. Ritchie, H. -s. Sim, M. Kataoka

Summary: Coulomb forces between high-energy electrons in unscreened regime are detected and analysed using a mesoscopic electron collider. The ability to control Coulomb interactions on picosecond time scales is crucial for quantum logic devices with flying electrons. Despite previous findings, our study reveals Coulomb-dominated collisions of high-energy single electrons in counter-propagating ballistic edge states, indicating new ways to utilize Coulomb interactions for high-speed sensing or gate operations on flying electron qubits.

NATURE NANOTECHNOLOGY (2023)

Article Optics

Short pulse generation from a graphene-coupled passively mode-locked terahertz laser

Elisa Riccardi, Valentino Pistore, Seonggil Kang, Lukas Seitner, Anna De Vetter, Christian Jirauschek, Juliette Mangeney, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Andrea C. Ferrari, Sukhdeep S. Dhillon, Miriam S. Vitiello

Summary: By using multilayer graphene saturable absorbers, we have successfully demonstrated a self-starting miniaturized short pulse terahertz laser, which utilizes an original device architecture with surface patterning in the entire cavity of a double-metal semiconductor 2.30-3.55 THz wire laser. This compact, all-electronic, all-passive, and inexpensive configuration achieves self-starting pulsed emission with 4.0 ps-long pulses.

NATURE PHOTONICS (2023)

Article Engineering, Electrical & Electronic

Formation of a lateral p-n junction light-emitting diode on an n-type high-mobility GaAs/Al0.33Ga0.67As heterostructure

C. P. Dobney, A. Nasir, P. See, C. J. B. Ford, J. P. Griffiths, C. Chen, D. A. Ritchie, M. Kataoka

Summary: We have fabricated a device with two lateral p-n junctions on an n-type GaAs/Al0.33Ga0.67As heterostructure. The n-type material was converted to p-type by removing dopants and applying a voltage to a gate in this region. Controlled electroluminescence from both p-n junctions was demonstrated by varying the applied bias voltages. The emitted spectrum peak width was approximately 8 units.

SEMICONDUCTOR SCIENCE AND TECHNOLOGY (2023)

Article Chemistry, Analytical

Comparison of Physical and System Factors Impacting Hydration Sensing in Leaves Using Terahertz Time-Domain and Quantum Cascade Laser Feedback Interferometry Imaging

Khushboo Singh, Aparajita Bandyopadhyay, Karl Bertling, Yah Leng Lim, Tim Gillespie, Dragan Indjin, Lianhe Li, Edmund H. Linfield, A. Giles Davies, Paul Dean, Aleksandar D. Rakic, Amartya Sengupta

Summary: In order to reduce water consumption in agriculture, photonics-based hydration sensing technology has been widely used for non-contact, non-invasive mapping of liquid water in plants. In this study, terahertz (THz) range sensing techniques were employed to map liquid water in leaves of Bambusa vulgaris and Celtis sinensis. Two complementary techniques, THz time-domain spectroscopic imaging and THz quantum cascade laser-based imaging, were utilized. The results provide detailed spatial and temporal information about hydration dynamics and dehydration effects on leaf structure.

SENSORS (2023)

Article Materials Science, Multidisciplinary

THz Ultra-Strong Light-Matter Coupling up to 200 K with Continuously-Graded Parabolic Quantum Wells

Paul Goulain, Chris Deimert, Mathieu Jeannin, Stefano Pirotta, Wojciech Julian Pasek, Zbigniew Wasilewski, Raffaele Colombelli, Jean-Michel Manceau

Summary: Continuously graded parabolic quantum wells are used to overcome the limitations of square quantum wells at terahertz frequencies. Microcavity intersubband polaritons are formed at frequencies as low as 1.8 THz, with ultra-strong coupling sustained up to 200 K. The use of sub-wavelength resonators preserves the ultra-strong coupling regime, making it a potential approach for generating non-classical light.

ADVANCED OPTICAL MATERIALS (2023)

Article Physics, Applied

Possible zero-magnetic field fractional quantization in In0.75Ga0.25As heterostructures

L. Liu, Y. Gul, S. N. Holmes, C. Chen, I. Farrer, D. A. Ritchie, M. Pepper

Summary: In this study, we systematically investigate a structure found in In0.75Ga0.25As heterostructures, and observe its stability and anisotropy in high magnetic fields. This research is important for understanding low-dimensional electronic systems with strong spin-orbit coupling.

APPLIED PHYSICS LETTERS (2023)

Article Nanoscience & Nanotechnology

Versatile and active THz wave polarization modulators using metamaterial/graphene resonators

Abdullah M. Zaman, Yuezhen Lu, Nikita W. Almond, Oliver J. Burton, Jack Alexander-Webber, Stephan Hofmann, Thomas Mitchell, Jonathan D. P. Griffiths, Harvey E. Beere, David A. Ritchie, Riccardo Degl'Innocenti

Summary: The study investigates the polarization modulation performance of an integrated metamaterial/graphene device in the THz band. By modifying the graphene's Fermi level, the device's optical response can be modified, enabling active tuning of ellipticity and continuous modification of optical activity. Active circular dichroism and optical activity can be independently exploited by carefully selecting the transmitted frequency and relative angle between the incoming linear polarization and the device's symmetry axis. This all-electronically tuneable versatile polarization device has potential applications in polarization spectroscopy, imaging, and THz wireless generation.

FRONTIERS IN NANOTECHNOLOGY (2023)

Article Materials Science, Multidisciplinary

Decoupling of the many-body effects from the electron mass in GaAs by means of reduced dimensionality

P. M. T. Vianez, Y. Jin, W. K. Tan, Q. Liu, J. P. Griffiths, I. Farrer, D. A. Ritchie, O. Tsyplyatyev, C. J. B. Ford

Summary: Determining the bare electron mass (m0) in crystals is challenging due to many-body effects. By using a one-dimensional geometry, the interaction effects can be separated from m0, and the measured value is (0.0525 +/- 0.0015)me in GaAs. The value of m0 remains constant with varying density, and it is approximately 22% lighter than observed in higher-dimensional GaAs structures, consistent with the quasiparticle picture of a Fermi liquid.

PHYSICAL REVIEW B (2023)

Article Materials Science, Multidisciplinary

Spin polarization and spin-dependent scattering of holes observed in transverse magnetic focusing

M. J. Rendell, S. D. Liles, A. Srinivasan, O. Klochan, I. Farrer, D. A. Ritchie, A. R. Hamilton

Summary: In two-dimensional systems with a spin-orbit interaction, magnetic focusing is utilized to separate particles with different spins spatially. We conducted measurements on hole magnetic focusing under two different magnitudes of the Rashba spin-orbit interaction. We discovered that the attenuation of a focusing peak, conventionally linked to a change in spin polarization, is actually caused by a change in the scattering of a spin state in hole systems with a k3 spin-orbit interaction. Additionally, we found that the change in scattering length determined through magnetic focusing is consistent with the results obtained from Shubnikov-de Haas oscillations measurements.

PHYSICAL REVIEW B (2023)

暂无数据