4.6 Article

Forecasting groundwater level fluctuations for rainfall-induced landslide

期刊

NATURAL HAZARDS
卷 57, 期 2, 页码 167-184

出版社

SPRINGER
DOI: 10.1007/s11069-010-9603-9

关键词

Groundwater level fluctuation; Hillslope; Linear reservoir method; Rainfall-induced landslide

向作者/读者索取更多资源

Groundwater plays a critical and important role in many landslides. Heavy precipitation can raise the groundwater level within a hillslope and lead to instability. The purpose of this paper is to present a model by means of continuity equation to predict groundwater level fluctuations in hillslope in response to hourly precipitation rates. The linear reservoir method is employed to describe the travel time distribution of infiltration, and Darcy's law is then used to establish the groundwater flux rate of control volume. The governing equation shows that the changing rate of groundwater level fluctuation can be interpreted by two new defined variables (Sink Number and Rise Number) in this study. The application of the model is demonstrated using the rainfall-induced landslide at Lu-Shan, Nantou County, Taiwan. Data from one storm event are used to calibrate the model and estimate parameters by using the heuristic algorithm. Post-storm rainfall data from another storm event are employed to verify the calibrated parameters. The contribution of this study shows that a small Sink Number results in a fast recession and a large Rise Number yields a fast rise of groundwater level. This method may be practical to have better understanding on the rainfall-induced landslide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据