4.8 Article

Si quantum dots embedded in an amorphous SiC matrix: nanophase control by non-equilibrium plasma hydrogenation

期刊

NANOSCALE
卷 2, 期 4, 页码 594-600

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b9nr00371a

关键词

-

资金

  1. National Research Foundation (Singapore)
  2. Australian Research Council
  3. CSIRO (Australia)

向作者/读者索取更多资源

Nanophase nc-Si/a-SiC films that contain Si quantum dots (QDs) embedded in an amorphous SiC matrix were deposited on single-crystal silicon substrates using inductively coupled plasma-assisted chemical vapor deposition from the reactive silane and methane precursor gases diluted with hydrogen at a substrate temperature of 200 degrees C. The effect of the hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen-to-silane plus methane gases), ranging from 0 to 10.0, on the morphological, structural, and compositional properties of the deposited films, is extensively and systematically studied by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, Fourier-transform infrared absorption spectroscopy, and X-ray photoelectron spectroscopy. Effective nanophase segregation at a low hydrogen dilution ratio of 4.0 leads to the formation of highly uniform Si QDs embedded in the amorphous SiC matrix. It is also shown that with the increase of X, the crystallinity degree and the crystallite size increase while the carbon content and the growth rate decrease. The obtained experimental results are explained in terms of the effect of hydrogen dilution on the nucleation and growth processes of the Si QDs in the high-density plasmas. These results are highly relevant to the development of next-generation photovoltaic solar cells, light-emitting diodes, thin-film transistors, and other applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Review Materials Science, Multidisciplinary

Plasma-controlled surface wettability: recent advances and future applications

Chuanlong Ma, Anton Nikiforov, Dirk Hegemann, Nathalie De Geyter, Rino Morent, Kostya (Ken) Ostrikov

Summary: This review presents recent advances in low-temperature plasma processing for controlling surface wettability. The underlying mechanisms, key features of fabrication processes, and water-surface interactions are discussed. It aims to guide further development of advanced functional materials.

INTERNATIONAL MATERIALS REVIEWS (2023)

Article Chemistry, Physical

Recent advances in plasma-enabled ammonia synthesis: state-of-the-art, challenges, and outlook

Xin Zeng, Shuai Zhang, Xiucui Hu, Cheng Zhang, Kostya (Ken) Ostrikov, Tao Shao

Summary: With the increase in the greenhouse effect and reduction of fossil fuel resources, finding a feasible solution to directly convert power to chemicals using renewable energy is urgent. The power-to-chemicals approach, such as non-thermal plasma, electro-catalysis, and photo-catalysis, has shown great potential in the past two decades. This paper introduces the application of plasma technology in energy conversion, focusing on plasma-enabled ammonia synthesis and analyzing its state-of-the-art, mechanisms, and techno-economics. It emphasizes the importance of the power-to-chemicals approach in reducing carbon emissions and environmental pollution.

FARADAY DISCUSSIONS (2023)

Article Chemistry, Multidisciplinary

Hybrid 2D perovskite and red emitting carbon dot composite for improved stability and efficiency of LEDs

Amandeep Singh Pannu, Suvankar Sen, Xiaodong (Tony) Wang, Robert Jones, Kostya (Ken) Ostrikov, Prashant Sonar

Summary: Organic-inorganic hybrid lead trihalide perovskites have shown promise in various optoelectronic devices. Red-emitting perovskite-based LEDs have been less developed compared to green and blue ones. This study utilizes red-emitting 2D perovskites and carbon dots to create a stable composite material for red-emitting LEDs with improved performance.

NANOSCALE (2023)

Article Nanoscience & Nanotechnology

High quality epitaxial graphene on 4H-SiC by face-to-face growth in ultra-high vacuum

Negar Zebardastan, Jonathan Bradford, Josh Lipton-Duffin, Jennifer MacLeod, Kostya (Ken) Ostrikov, Massimo Tomellini, Nunzio Motta

Summary: Face-to-face annealing is an effective method for obtaining epitaxial graphene with precise control over size, quality, growth rate and thickness.

NANOTECHNOLOGY (2023)

Article Physics, Fluids & Plasmas

Transition mechanisms between selective O3 and NO x generation modes in atmospheric-pressure plasmas: decoupling specific discharge energy and gas temperature effects

Kun Liu, Wenqiang Geng, Xiongfeng Zhou, Qingsong Duan, Zhenfeng Zheng, Kostya (Ken) Ostrikov

Summary: Two modes of the atmospheric-pressure plasma discharge, characterized by the dominant O-3 and NO (x) species, were studied using numerical and experimental methods. A global chemical kinetics model was developed to investigate the mode transition mechanisms, and it accurately described the transition. The individual and synergistic effects of discharge energy and gas temperature on species density and the relative contributions of dominant reactions were quantified under increasing discharge voltage conditions.

PLASMA SOURCES SCIENCE & TECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

Plasma-Enabled Graphene Quantum Dot Hydrogels as Smart Anticancer Drug Nanocarriers

Darwin Kurniawan, Jacob Mathew, Michael Ryan Rahardja, Hoang-Phuc Pham, Pei-Chun Wong, Neralla Vijayakameswara Rao, Kostya (Ken) Ostrikov, Wei-Hung Chiang

Summary: This study reports the development of smart anticancer drug nanocarriers through plasma engineering technique. The nanocarriers containing chitosan and nitrogen-doped graphene quantum dots can release drugs in a pH-responsive manner and exhibit enhanced toughness. The loaded nanocarriers demonstrate improved drug loading capability and stable release, showing great potential in cancer treatment.
Article Chemistry, Multidisciplinary

Energy-Efficient Pathways for Pulsed-Plasma-Activated Sustainable Ammonia Synthesis

Xin Zeng, Shuai Zhang, Yadi Liu, Xiucui Hu, Kostya Ken Ostrikov, Tao Shao

Summary: To meet global net-zero emission targets, sustainable and low-carbon alternatives are urgently needed for energy-intensive industrial processes like ammonia synthesis. In this study, plasma catalysis is used to achieve renewable-electricity-driven ammonia synthesis under mild conditions. By identifying energy loss pathways and optimizing process parameters, such as pulse voltage and gap distance, high ammonia yields with high energy efficiency and low emission footprint are obtained.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Chemistry, Multidisciplinary

Controlling Energy Transfer in Plasma-Driven Ammonia Synthesis by Adding Helium Gas

Rusen Zhou, Dejiang Zhou, Baowang Liu, Lanlan Nie, Yubin Xian, Tianqi Zhang, Renwu Zhou, Xinpei Lu, Kostya Ken Ostrikov, Patrick J. Cullen

Summary: The addition of helium can enhance the synthesis of ammonia by modifying the energy transfer mechanism in the plasma, leading to more efficient activation of N2 and production of NH3.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Review Chemistry, Physical

In situ characterisation for nanoscale structure-performance studies in electrocatalysis

Tianlai Xia, Yu Yang, Qiang Song, Mingchuan Luo, Mianqi Xue, Kostya (Ken) Ostrikov, Yong Zhao, Fengwang Li

Summary: Recently, electrocatalytic reactions involving oxygen, nitrogen, water, and carbon dioxide have been developed to produce clean energy, fuels, and chemicals. Understanding catalyst structures, active sites, and reaction mechanisms is crucial for improving performance. In this review, we summarize state-of-the-art in situ characterisation techniques used in electrocatalysis, categorizing them into microscopy, spectroscopy, and other techniques. We discuss the capacities and limits of these techniques to guide further advances in the field.

NANOSCALE HORIZONS (2023)

Review Chemistry, Multidisciplinary

Advances in high-voltage supercapacitors for energy storage systems: materials and electrolyte tailoring to implementation

Jae Muk Lim, Young Seok Jang, Hoai Van T. Nguyen, Jun Sub Kim, Yeoheung Yoon, Byung Jun Park, Dong Han Seo, Kyung-Koo Lee, Zhaojun Han, Kostya (Ken) Ostrikov, Seok Gwang Doo

Summary: To achieve a zero-carbon-emission society, increasing the use of clean and renewable energy is crucial. However, renewable energy resources have limitations in terms of geographical locations and limited time intervals for energy generation. Therefore, there is a rising demand for high-performance energy storage systems (ESSs) to effectively store and utilize energy during peak and off-peak periods. Supercapacitors, particularly electrical double layer capacitors (EDLCs), show promise as short-term ESSs due to their long cycle retention, high power densities, fast charge/discharge characteristics, and moderate operating voltage window. However, further research is needed to increase the operating voltage and energy densities of EDLCs while maintaining long-term cycle stability and power densities, which are crucial for ESS operation. This article examines advancements in EDLC research to achieve a high operating voltage window and high energy densities for next-generation supercapacitor-based ESSs.

NANOSCALE ADVANCES (2023)

Article Physics, Multidisciplinary

Effect of charged dust grains on the electrojet instabilities

Sanjib Sarkar, Jyoti K. Atul, Modhuchandra Laishram, Dandan Zou, Kostya (Ken) Ostrikov

Summary: The Farley-Buneman and Gradient Drift instabilities in a partially ionized dusty electrojet region were investigated using a fluid model. The effects of dissociative electron-ion recombination and dust charge fluctuation on the instabilities were considered. The dispersion relation describing the propagation of electrojet instabilities within the dust ion acoustic range in a magnetized partially ionized dusty plasma was solved numerically and analytically. The results showed that the Gradient Drift instability was unstable at a much longer wavelength compared to the Farley-Buneman instability. The threshold electron drift velocity for Farley-Buneman instability was affected by the charge on dust, with a decrease at lower altitudes and an increase at higher altitudes. Furthermore, the dissociative electron-ion recombination had a stronger damping effect than the dust charge fluctuation on both instabilities.

PHYSICA SCRIPTA (2023)

Article Chemistry, Multidisciplinary

Plasma-Activated Mist: Continuous-Flow, Scalable Nitrogen Fixation, and Aeroponics

Haotian Gao, Guoli Wang, Zhongzheng Huang, Lanlan Nie, Dawei Liu, Xinpei Lu, Guangyuan He, Kostya Ken Ostrikov

Summary: Nitrogen fixation is a crucial process for various biological and industrial processes, but it is also a major source of carbon emissions globally. In this study, a novel approach using plasma-activated mist (PAM) is proposed for efficient and sustainable nitrogen fixation. The PAM system generates nitrogen-fixation species through the reaction of air plasma and water mist, and the liquid-phase nitrogen fixation product is dominated by NO3-. This system is applied to deliver nitrogen-based nutrients directly to plant roots using an aeroponic system, leading to significant improvements in plant growth.

ACS SUSTAINABLE CHEMISTRY & ENGINEERING (2023)

Article Nanoscience & Nanotechnology

Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair

Pei-Chun Wong, Darwin Kurniawan, Jia-Lin Wu, Wei-Ru Wang, Kuan-Hao Chen, Chieh-Ying Chen, Ying-Chun Chen, Loganathan Veeramuthu, Chi-Ching Kuo, Kostya Ken Ostrikov, Wei-Hung Chiang

Summary: In this study, a multifunctional metal-based scaffold was developed for bone defect repair by combining nitrogen-doped graphene quantum dot hydrogel and magnesium alloy. Through in vivo study, it was found that this hybrid scaffold promoted faster, more uniform, and directional bone growth, showing great potential for application in bone defect repair.

ACS APPLIED MATERIALS & INTERFACES (2023)

Article Chemistry, Multidisciplinary

Plasma-Etched Nanograss Surface without Lithographic Patterning to Immobilize Water Droplet for Highly Sensitive Raman Sensing

Hsiuan Ling Ho, Jung Yen Yang, Chun Hung Lin, Jiann Shieh, Yu Fang Huang, Yi Hong Ho, Tsung Shine Ko, Chiung Chih Hsu, Kostya (Ken) Ostrikov

Summary: The development of reliable and cost-effective molecular detection at the attomolar level on analyte-immobilizing surfaces without lithographic patterning is a challenge in chemical sensing. This study presents a novel approach using plasma etching to produce custom-designed adhesive superhydrophobic silicon nanograss surfaces. These surfaces enable effective immobilization of Ag nanoparticles and R6G target molecules, providing a reliable Raman scattering platform for detecting trace analytes. The study also introduces a plasma-enabled approach for precise interface nanostructuring, potentially leading to unprecedented capabilities in molecular-level sensing technologies.

ADVANCED MATERIALS INTERFACES (2023)

Review Chemistry, Multidisciplinary

A review on reactive oxygen species (ROS)-inducing nanoparticles activated by uni- or multi-modal dynamic treatment for oncotherapy

Jinyong Lin, Dong Li, Changhong Li, Ziqi Zhuang, Chengchao Chu, Kostya (Ken) Ostrikov, Erik W. W. Thompson, Gang Liu, Peiyu Wang

Summary: Cancer cells are more susceptible to oxidative stress and nanomaterials-based therapies that generate reactive oxygen species (ROS) have been effective in eliminating cancer cells. These therapies, including chemodynamic therapy, photodynamic therapy, sonodynamic therapy, as well as multi-modal therapies such as combination therapy, have shown significant inhibition of tumor growth. However, the limitations of multi-modal therapy in material preparation and operation protocols hinder its clinical application. Cold atmospheric plasma (CAP), as a reliable source of ROS, light, and electromagnetic fields, provides a simple alternative for implementing multi-modal treatments. Therefore, the emerging field of tumor precision medicine is expected to benefit from these promising multi-modal therapies based on ROS-generating nanomaterials and reactive media like CAPs.

NANOSCALE (2023)

Article Chemistry, Multidisciplinary

Exploring the degradation of silver nanowire networks under thermal stress by coupling in situ X-ray diffraction and electrical resistance measurements

Laetitia Bardet, Herve Roussel, Stefano Saroglia, Masoud Akbari, David Munoz-Rojas, Carmen Jimenez, Aurore Denneulin, Daniel Bellet

Summary: The thermal instability of silver nanowires leads to increased electrical resistance in AgNW networks. Understanding the relationship between structural and electrical properties of AgNW networks is crucial for their integration as transparent electrodes in flexible optoelectronics. In situ X-ray diffraction measurements were used to study the crystallographic evolution of Ag-specific Bragg peaks during thermal ramping, revealing differences in thermal and structural transitions between bare and SnO2-coated AgNW networks.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Recording physiological and pathological cortical activity and exogenous electric fields using graphene microtransistor arrays in vitro

Nathalia Cancino-Fuentes, Arnau Manasanch, Joana Covelo, Alex Suarez-Perez, Enrique Fernandez, Stratis Matsoukis, Christoph Guger, Xavi Illa, Anton Guimera-Brunet, Maria V. Sanchez-Vives

Summary: This study provides a comprehensive characterization of graphene-based solution-gated field-effect transistors (gSGFETs) for brain recordings, highlighting their potential clinical applications.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Metal oxide-embedded carbon-based materials for polymer solar cells and X-ray detectors

Sikandar Aftab, Hailiang Liu, Dhanasekaran Vikraman, Sajjad Hussain, Jungwon Kang, Abdullah A. Al-Kahtani

Summary: This study examines the effects of hybrid nanoparticles made of NiO@rGO and NiO@CNT on the active layers of polymer solar cells and X-ray photodetectors. The findings show that these hybrid nanoparticles can enhance the charge carrier capacities and exciton dissociation properties of the active layers. Among the tested configurations, the NiO@CNT device demonstrates superior performance in converting sunlight into electricity, and achieves the best sensitivity for X-ray detection.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Peptide-mediated targeted delivery of SOX9 nanoparticles into astrocytes ameliorates ischemic brain injury

Hyo Jung Shin, Seung Gyu Choi, Fengrui Qu, Min-Hee Yi, Choong-Hyun Lee, Sang Ryong Kim, Hyeong-Geug Kim, Jaewon Beom, Yoonyoung Yi, Do Kyung Kim, Eun-Hye Joe, Hee-Jung Song, Yonghyun Kim, Dong Woon Kim

Summary: This study investigates the role of SOX9 in reactive astrocytes following ischemic brain damage using a PLGA nanoparticle plasmid delivery system. The results demonstrate that PLGA nanoparticles can reduce ischemia-induced neurological deficits and infarct volume, providing a potential opportunity for stroke treatment.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Spontaneous unbinding transition of nanoparticles adsorbing onto biomembranes: interplay of electrostatics and crowding

Anurag Chaudhury, Koushik Debnath, Nikhil R. Jana, Jaydeep K. Basu

Summary: The study investigates the interaction between nanoparticles and cell membranes, and identifies key parameters, including charge, crowding, and membrane fluidity, that determine the adsorbed concentration and unbinding transition of nanoparticles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab

Sina Sadeghi, Fazel Bateni, Taekhoon Kim, Dae Yong Son, Jeffrey A. Bennett, Negin Orouji, Venkat S. Punati, Christine Stark, Teagan D. Cerra, Rami Awad, Fernando Delgado-Licona, Jinge Xu, Nikolai Mukhin, Hannah Dickerson, Kristofer G. Reyes, Milad Abolhasani

Summary: In this study, an autonomous approach for the development of lead-free metal halide perovskite nanocrystals is presented, which integrates a modular microfluidic platform with machine learning-assisted synthesis modeling. This approach enables rapid and optimized synthesis of copper-based lead-free nanocrystals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices

Zahir Abbas, Nissar Hussain, Surender Kumar, Shaikh M. Mobin

Summary: The rational construction of free-standing and flexible electrodes for electrochemical energy storage devices is an emerging research focus. In this study, a redox-active metal-organic framework (MOF) was prepared on carbon nanofibers using an in situ approach, resulting in a flexible electrode with high redox-active behavior and unique properties such as high flexibility and lightweight. The prepared electrode showed excellent cyclic retention and rate capability in supercapacitor applications. Additionally, it could be used as a freestanding electrode in flexible devices at different bending angles.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

A NIR-driven green affording-oxygen microrobot for targeted photodynamic therapy of tumors

Lishan Zhang, Xiaoting Zhang, Hui Ran, Ze Chen, Yicheng Ye, Jiamiao Jiang, Ziwei Hu, Miral Azechi, Fei Peng, Hao Tian, Zhili Xu, Yingfeng Tu

Summary: Photodynamic therapy (PDT) is a promising local treatment modality in cancer therapy, but its therapeutic efficacy is restricted by ineffective delivery of photosensitizers and tumor hypoxia. In this study, a phototactic Chlorella-based near-infrared (NIR) driven green affording-oxygen microrobot system was developed for enhanced PDT. The system exhibited desirable phototaxis and continuous oxygen generation, leading to the inhibition of tumor growth in mice. This study demonstrates the potential of using a light-driven green affording-oxygen microrobot to enhance photodynamic therapy.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Novel hollow MoS2@C@Cu2S heterostructures for high zinc storage performance

Yujin Li, Jing Xu, Xinqi Luo, Futing Wang, Zhong Dong, Ke-Jing Huang, Chengjie Hu, Mengyi Hou, Ren Cai

Summary: In this study, hollow heterostructured materials were constructed using an innovative template-engaged method as cathodes for zinc-ion batteries. The materials exhibited fast Zn2+ transport channels, improved electrical conductivity, and controlled volume expansion during cycling. The designed structure allowed for an admirable reversible capacity and high coulombic efficiency.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface

Paritosh Mahato, Shashi Shekhar, Rahul Yadav, Saptarshi Mukherjee

Summary: This study comprehensively elucidates the role of the core and electrostatic surface of metal nanoclusters in catalytic reduction reactions. The electrostatic surface dramatically modulates the reactivity of metal nanoclusters.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Facile green synthesis of wasted hop-based zinc oxide nanozymes as peroxidase-like catalysts for colorimetric analysis

Pei Liu, Mengdi Liang, Zhengwei Liu, Haiyu Long, Han Cheng, Jiahe Su, Zhongbiao Tan, Xuewen He, Min Sun, Xiangqian Li, Shuai He

Summary: This study demonstrates a simple and environmentally-friendly method for the synthesis of zinc oxide nanozymes (ZnO NZs) using wasted hop extract (WHE). The WHE-ZnO NZs exhibit exceptional peroxidase-like activity and serve as effective catalysts for the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). In addition, a straightforward colorimetric technique for detecting both H2O2 and glucose was developed using the WHE-ZnO NZs as peroxidase-like catalysts.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Impact of channel nanostructures of porous carbon particles on their catalytic performance

Hyunkyu Oh, Young Jun Lee, Eun Ji Kim, Jinseok Park, Hee-Eun Kim, Hyunsoo Lee, Hyunjoo Lee, Bumjoon J. Kim

Summary: Mesoporous carbon particles have unique structural properties that make them suitable as support materials for catalytic applications. This study investigates the impact of channel nanostructures on the catalytic activity of porous carbon particles (PCPs) by fabricating PCPs with controlled channel exposure on the carbon surface. The results show that PCPs with highly open channel nanostructures exhibit significantly higher catalytic activity compared to those with closed channel nanostructures.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Fabrication of a tough, long-lasting adhesive hydrogel patch via the synergy of interfacial entanglement and adhesion group densification

Yunjie Lu, Zhaohui Li, Zewei Li, Shihao Zhou, Ning Zhang, Jianming Zhang, Lu Zong

Summary: A tough, long-lasting adhesive and highly conductive nanocomposite hydrogel (PACPH) was fabricated via the synergy of interfacial entanglement and adhesion group densification. PACPH possesses excellent mechanical properties, interfacial adhesion strength, and conductivity, making it a promising material for long-term monitoring of human activities and electrocardiogram signals.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Strongly coupled plasmonic metal nanoparticles with reversible pH-responsiveness and highly reproducible SERS in solution

Zichao Wei, Audrey Vandergriff, Chung-Hao Liu, Maham Liaqat, Mu-Ping Nieh, Yu Lei, Jie He

Summary: We have developed a simple method to prepare polymer-grafted plasmonic metal nanoparticles with pH-responsive surface-enhanced Raman scattering. By using pH-responsive polymers as ligands, the aggregation of nanoparticles can be controlled, leading to enhanced SERS. The pH-responsive polymer-grafted nanoparticles show high reproducibility and sensitivity in solution, providing a novel approach for SERS without the need for sample pre-concentration.

NANOSCALE (2024)

Article Chemistry, Multidisciplinary

Unlocking the full potential of citric acid-synthesized carbon dots as a supercapacitor electrode material via surface functionalization

Melis Ozge Alas Colak, Ahmet Gungor, Merve Buldu Akturk, Emre Erdem, Rukan Genc

Summary: This research investigates the effect of functionalizing carbon dots with hydroxyl polymers on their performance as electrode materials in a supercapacitor. The results show that the functionalized carbon dots exhibit excellent electrochemical performance and improved stability.

NANOSCALE (2024)