4.8 Article

Performance projection of graphene nanomesh and nanoroad transistors

期刊

NANO RESEARCH
卷 5, 期 3, 页码 164-171

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-012-0196-3

关键词

Graphene; hydrogenation; fluorination; field-effect transistor

资金

  1. office of naval research (ONR)
  2. army research lab (ARL)
  3. national science foundation (NSF)
  4. Directorate For Engineering
  5. Div Of Electrical, Commun & Cyber Sys [0846563] Funding Source: National Science Foundation
  6. Division of Computing and Communication Foundations
  7. Direct For Computer & Info Scie & Enginr [916683] Funding Source: National Science Foundation

向作者/读者索取更多资源

We examine the performance limits of field-effect transistors (FETs) with chemically modified graphene as the channel materials. Graphene nanoroad (XNR) and graphene nanomesh (XNM) can be created through selective chemical modification by an X adsorbate (either H or F) on graphene, which generates a bandgap while conserving the continuous two-dimensional (2D) atomistic layer. We adopt a ballistic transistor model, where the band structures were calculated using ab initio simulations to assess the performance of graphene nanoroad and nanomesh transistors. It is shown that arrays of graphene nanoroads, defined by hydrogenation or fluorination of atomically narrow dimer lines in a 2D graphene, are most ideal for transistor channel materials in terms of delivering a large ON-current, and significantly outperform Si metal-oxide-semiconductor field-effect transistors (MOSFETs). Alternatively, comparable performance to silicon can be achieved by careful design of a graphene nanomesh through patterned hydrogenation or fluorination. Both hydrogenation and fluorination lead to similar transistor performance, with fluorination more preferred in terms of chemical energetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据