4.8 Article

Measurement of Emission Lifetime Dynamics and Biexciton Emission Quantum Yield of Individual InAs Colloidal Nanocrystals

期刊

NANO LETTERS
卷 14, 期 12, 页码 6787-6791

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl502180w

关键词

indium arsenide; nanocrystal; blinking; SNSPD; biexcition

资金

  1. MIT Center for Excitonics, an Energy Frontier Research Center - U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001088]

向作者/读者索取更多资源

The understanding of the photophysics of visible-emitting colloidal nanocrystals (NCs) has long been aided by single-molecule studies of their emission. Until recently, no suitable detection technologies have existed for corresponding studies of shortwave-infrared (SWIR) emitters. Now, the use of superconducting nanowire single-photon detectors (SNSPDs) enables the detailed study of SWIR NC emission dynamics at the single-emitter level. Here, we report a detailed analysis of the emission dynamics of individual InAs/CdZnS NCs emitting in the SWIR region. We observe blinking akin to the type A and type B blinking previously observed in visible-emitting CdSe NCs. We determine the intrinsic radiative lifetime of several InAs/CdZnS NCs and find examples ranging from 50-200 ns, indicative of a quasi-type-II electronic structure. We also measure g(0)((2)) for several of these NCs and find that their biexciton emission quantum yields vary from <1% up to 43%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Article Chemistry, Multidisciplinary

Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging

Elizabeth S. Levy, Cheryl A. Tajon, Thomas S. Bischof, Pan Iafrati, Angel Fernandez-Bravo, David J. Garfield, Maysamreza Chamanzar, Michel M. Maharbiz, Vikaas S. Sohal, P. James Schuck, Bruce E. Cohen, Emory M. Chan

ACS NANO (2016)

Article Chemistry, Multidisciplinary

PbS Nanocrystal Emission Is Governed by Multiple Emissive States

Justin R. Caram, Sophie N. Bertram, Hendrik Utzat, Whitney R. Hess, Jessica A. Carr, Thomas S. Bischof, Andrew P. Beyler, Mark W. B. Wilson, Moungi G. Bawendi

NANO LETTERS (2016)

Article Optics

Extracting the average single-molecule biexciton photoluminescence lifetime from a solution of chromophores

Thomas S. Bischof, Justin R. Caram, Andrew P. Beyler, Moungi G. Bawendi

OPTICS LETTERS (2016)

Article Nanoscience & Nanotechnology

Optical Trapping and Two-Photon Excitation of Colloidal Quantum Dots Using Bowtie Apertures

Russell A. Jensen, I-Chun Huang, Ou Chen, Jennifer T. Choy, Thomas S. Bischof, Marko Loncar, Moungi G. Bawendi

ACS PHOTONICS (2016)

Article Engineering, Biomedical

Next-generation in vivo optical imaging with short-wave infrared quantum dots

Oliver T. Bruns, Thomas S. Bischof, Daniel K. Harris, Daniel Franke, Yanxiang Shi, Lars Riedemann, Alexander Bartelt, Frank B. Jaworski, Jessica A. Carr, Christopher J. Rowlands, Mark W. B. Wilson, Ou Chen, He Wei, Gyu Weon Hwang, Daniel M. Montana, Igor Coropceanu, Odin B. Achorn, Jonas Kloepper, Joerg Heeren, Peter T. C. So, Dai Fukumura, Klavs F. Jensen, Rakesh K. Jain, Moungi G. Bawendi

NATURE BIOMEDICAL ENGINEERING (2017)

Article Chemistry, Multidisciplinary

Multiexciton Lifetimes Reveal Triexciton Emission Pathway in CdSe Nanocrystals

Katherine E. Shulenberger, Thomas S. Bischof, Justin R. Caram, Hendrik Utzat, Igor Coropceanu, Lea Nienhaus, Moungi G. Bawendi

NANO LETTERS (2018)

Review Chemistry, Multidisciplinary

Deconstructing the photon stream from single nanocrystals: from binning to correlation

Jian Cui, Andrew P. Beyler, Thomas S. Bischof, Mark W. B. Wilson, Moungi G. Bawendi

CHEMICAL SOCIETY REVIEWS (2014)

Article Chemistry, Multidisciplinary

Sample-Averaged Biexciton Quantum Yield Measured by Solution-Phase Photon Correlation

Andrew P. Beyler, Thomas S. Bischof, Jian Cui, Igor Coropceanu, Daniel K. Harris, Moungi G. Bawendi

NANO LETTERS (2014)

Article Chemistry, Physical

Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals

Nicholas J. Thompson, Mark W. B. Wilson, Daniel N. Congreve, Patrick R. Brown, Jennifer M. Scherer, Thomas S. Bischof, Mengfei Wu, Nadav Geva, Matthew Welborn, Troy Van Voorhis, Vladimir Bulovic, Moungi G. Bawendi, Marc A. Baldo

NATURE MATERIALS (2014)

Article Chemistry, Physical

Interfacial coordination interactions studied on cobalt octaethylporphyrin and cobalt tetraphenylporphyrin monolayers on Au(111)

Yun Bai, Michael Sekita, Martin Schmid, Thomas Bischof, Hans-Peter Steinrueck, J. Michael Gottfried

PHYSICAL CHEMISTRY CHEMICAL PHYSICS (2010)

Article Chemistry, Multidisciplinary

Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color In Vivo Imaging with Shortwave Infrared Detection

Emily D. Cosco, Bernardo A. Arus, Anthony L. Spearman, Timothy L. Atallah, Irene Lim, Olivia S. Leland, Justin R. Caram, Thomas S. Bischof, Oliver T. Bruns, Ellen M. Sletten

Summary: The use of brighter polymethine dyes with varied excitation wavelengths in SWIR imaging has expanded multiplexing capabilities. The newly developed chromenylium polymethine dyes exhibit reduced nonradiative rates and enhanced emissive properties.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2021)

Article Biochemical Research Methods

Targeted multicolor in vivo imaging over 1,000 nm enabled by nonamethine cyanines

Venu G. Bandi, Michael P. Luciano, Mara Saccomano, Nimit L. Patel, Thomas S. Bischof, Jakob G. P. Lingg, Peter T. Tsrunchev, Meredith N. Nix, Bastian Ruehle, Chelsea Sanders, Lisa Riffle, Christina M. Robinson, Simone Difilippantonio, Joseph D. Kalen, Ute Resch-Genger, Joseph Ivanic, Oliver T. Bruns, Martin J. Schnermann

Summary: Through rational design, red-shifted, bioconjugatable heptamethine cyanine dyes were developed for multiplexed in vivo imaging in the shortwave-infrared/near-infrared-II region. The use of wavelengths between 1,000 and 2,000 nm enables high-resolution in vivo imaging at depths not possible with conventional optical wavelengths. Recent progress has shown a lack of bioconjugatable probes for imaging in the shortwave-infrared or near-infrared (NIR)-II range.

NATURE METHODS (2022)

暂无数据