4.8 Article

Multifunctional Hierarchically Assembled Nanostructures as Complex Stage-Wise Dual-Delivery Systems for Coincidental Yet Differential Trafficking of siRNA and Paclitaxel

期刊

NANO LETTERS
卷 13, 期 5, 页码 2172-2181

出版社

AMER CHEMICAL SOC
DOI: 10.1021/nl4006645

关键词

Multifunctional shell cross-linked nanoparticles; siRNA; paclitaxel; combinational therapy; theranostics; intracellular delivery mechanisms; immunotoxicity; nanoparticle shape; cylindrical nanoparticles

资金

  1. National Heart Lung and Blood Institute of the National Institutes of Health as a Program of Excellence in Nanotechnology [HHSN268201000046C]
  2. Welch Foundation through the W. T. Doherty-Welch Chair in Chemistry [A-0001]

向作者/读者索取更多资源

Development of multifunctional nanostructures that can be tuned to codeliver multiple drugs and diagnostic agents to diseased tissues is of great importance. Hierarchically assembled theranostic (HAT) nanostructures based on anionic cylindrical shell cross-linked nanoparticles and cationic shell cross-linked knedel-like nanoparticles (cSCKs) have recently been developed by our group to deliver siRNA intracellularly and to undergo radiolabeling. In the current study, paclitaxel, a hydrophobic anticancer drug, and siRNA have been successfully loaded into the cylindrical and spherical components of the hierarchical assemblies, respectively. Cytotoxicity, immunotoxicity, and intracellular delivery mechanism of the HAT nanostructures and their individual components have been investigated. Decoration of nanoparticles with F3-tumor homing peptide was shown to enhance the selective cellular uptake of the spherical particles, whereas the HAT nanoassemblies underwent an interesting disassembly process in contact with either OVCAR-3 or RAW 264.7 cell lines. The HAT nanostructures were found to stick to the cell membrane and trigger the release of spherical cSCKs templated onto their surfaces intracellularly, while retaining the cylindrical part on the cell surface. Combination of paclitaxel and cell-death siRNA (siRNA that induces cell death) into the HAT nanostructures resulted in greater reduction in cell viability than siRNA complexed with Lipofectamine and the assemblies loaded with the individual drugs. In addition, a shape-dependent immunotoxicity was observed for both spherical and cylindrical nanoparticles with the latter being highly immunotoxic. Supramolecular assembly of the two nanoparticles into the HAT nanostructures significantly reduced the immunotoxicity of both cSCKs and cylinders. HAT nanostructures decorated with targeting moieties, loaded with nucleic acids, hydrophobic drugs, radiolabels, and fluorophores, with control over their toxicity, immunotoxicity, and intracellular delivery might have great potential for biomedical delivery applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据