4.4 Article

Unmanned bicycle balancing via Lyapunov rule-based fuzzy control

期刊

MULTIBODY SYSTEM DYNAMICS
卷 31, 期 2, 页码 147-168

出版社

SPRINGER
DOI: 10.1007/s11044-013-9357-8

关键词

Balancing; Fuzzy control; Lyapunov stability criterion; Roll angle tracking; Unmanned bicycle

向作者/读者索取更多资源

Guaranteed stability fuzzy controller for stabilization the motion of an unmanned bicycle is proposed. First, a fuzzy control system capable of automatically balancing an unmanned bicycle through tracking desired roll angle is developed. Fuzzy logic controller membership functions are defined utilizing scaling factors. To guarantee the stability of the closed loop system, similar to previous approaches reported in the literature, fuzzy If-Then rules are constructed based on Lyapunov stability criterion. It is indicated that the proposed fuzzy controller violates Lyapunov stability criterion. The reason of such a violation is argued in detail. To cope with this shortcoming, some modifications are made to the control strategy to assure stability. Through these modifications, the modified fuzzy controller is developed which simultaneously balances the bicycle and guarantees stability while minimizing roll angle tracking error and its derivative. It is indicated that the improved fuzzy controller can adapt to a variety of initial conditions. Moreover, robustness of the controller against parameter variation is verified through its implementation on different bicycle designs (different sets of bicycle parameters). Simulation results confirm the efficacy of the proposed fuzzy controller in terms of settling time and overshoot in comparison with previous studies. Sensitivity analysis of the controller efficiency with respect to system parameters is also assessed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据