4.4 Article

Evaluation of Ensemble Configurations for the Analysis and Prediction of Heavy-Rain-Producing Mesoscale Convective Systems

期刊

MONTHLY WEATHER REVIEW
卷 142, 期 11, 页码 4108-4138

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/MWR-D-13-00357.1

关键词

-

资金

  1. National Science Foundation [AGS-1157425]
  2. Div Atmospheric & Geospace Sciences
  3. Directorate For Geosciences [1157425] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study investigates probabilistic forecasts made using different convection-allowing ensemble configurations for a three-day period in June 2010 when numerous heavy-rain-producing mesoscale convective systems (MCSs) occurred in the United States. These MCSs developed both along a baroclinic zone in the Great Plains, and in association with a long-lived mesoscale convective vortex (MCV) in Texas and Arkansas. Four different ensemble configurations were developed using an ensemble-based data assimilation system. Two configurations used continuously cycled data assimilation, and two started the assimilation 24 h prior to the initialization of each forecast. Each configuration was run with both a single set of physical parameterizations and a mixture of physical parameterizations. These four ensemble forecasts were also compared with an ensemble run in real time by the Center for the Analysis and Prediction of Storms (CAPS). All five of these ensemble systems produced skillful probabilistic forecasts of the heavy-rain-producing MCSs, with the ensembles using mixed physics providing forecasts with greater skill and less overall bias compared to the single-physics ensembles. The forecasts using ensemble-based assimilation systems generally outperformed the real-time CAPS ensemble at lead times of 6-18 h, whereas the CAPS ensemble was the most skillful at forecast hours 24-30, though it also exhibited a wet bias. The differences between the ensemble precipitation forecasts were found to be related in part to differences in the analysis of the MCV and its environment, which in turn affected the evolution of errors in the forecasts of the MCSs. These results underscore the importance of representing model error in convection-allowing ensemble analysis and prediction systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据