4.7 Article

Decoding the stellar fossils of the dusty Milky Way progenitors

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu1962

关键词

stars: formation; stars: Population II; stars: Population III; supernovae: general; Galaxy: evolution; galaxies: evolution; galaxies: ISM

资金

  1. European Research Council under European Unions/ERC [306476]
  2. National Science Foundation [NSF PHY11-25915]
  3. Netherlands Organization for Scientific Research (NWO), VENI [639.041.233]
  4. European Research Council (ERC) [306476] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

We investigate the metallicity distribution function (MDF) in the Galactic halo and the relative fraction of carbon-normal and carbon-rich stars. To this aim, we use an improved version of the semi-analytical code GAlaxy MErger Tree and Evolution (GAMETE), that reconstructs the hierarchical merger tree of the Milky Way (MW), following the star formation history and the metal and dust evolution in individual progenitors. The predicted scaling relations between the dust, metal and gas masses for MW progenitors show a good agreement with observational data of local galaxies and of gamma-ray burst (GRB) host galaxies at 0.1 < z < 6.3. Comparing the simulated and the observed MDF, we find that in order to predict the formation of hyperiron-poor stars at [Fe/H] < -4, faint supernova (SN) explosions have to dominate the metal yields produced by Population III (Pop III) stars, disfavouring a Pop III initial mass function that extends to stellar masses >140 M-circle dot, into the Pair-Instability SN progenitor mass range. The relative contribution of C-normal and C-enhanced stars to the MDF and its dependence on [Fe/H] points to a scenario where the Pop III/II transition is driven by dust cooling, and the first low-mass stars form when the dust-to-gas ratio in their parent clouds exceeds a critical value of D-crit = 4.4 x 10(-9). Other transition criteria do not predict any C-normal stars below [Fe/H] < -4, at odds with observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据