4.7 Article

The secular evolution of the Kuiper belt after a close stellar encounter

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stu1650

关键词

methods: numerical; Kuiper belt: general; planets and satellites: dynamical evolution and stability

资金

  1. Deptartment of Physics (Sapienza, University of Rome)
  2. Netherlands Research Council NWO [643.200.503, 639.073.803, 614.061.608]
  3. Netherlands Research School for Astronomy (NOVA)
  4. HPC-EUROPA2 project [1249]
  5. European Commission - Capacities Area - Research Infrastructures

向作者/读者索取更多资源

We show the effects of the perturbation caused by a passing by star on the Kuiper belt objects (KBOs) of our Solar system. The dynamics of the Kuiper belt (KB) is followed by direct N-body simulations. The sampling of the KB has been done with N up to 131 062, setting the KBOs on initially nearly circular orbits distributed in a ring of surface density Sigma similar to r(-2). This modellization allowed us to investigate the secular evolution of the KB upon the encounter with the perturbing star. Actually, the encounter itself usually leads towards eccentricity and inclination distributions similar to observed ones, but tends also to excite the low-eccentricity population (e less than or similar to 0.1 around a similar to 40 au from the Sun), depleting this region of low eccentricities. The following long-term evolution shows a 'cooling' of the eccentricities repopulating the low-eccentricity area. In dependence on the assumed KBO mass spectrum and sampled number of bodies, this repopulation takes place in a time that goes from 0.5 to 100 Myr. Due to the unavoidable limitation in the number of objects in our long-term simulations (N <= 16 384), we could not consider a detailed KBO mass spectrum, accounting for low-mass objects, thus our present simulations are not reliable in constraining correlations among inclination distribution of the KBOs and other properties, such as their size distribution. However, our high-precision long-term simulations are a starting point for future larger studies on massively parallel computational platforms which will provide a deeper investigation of the secular evolution (similar to 100 Myr) of the KB over its whole mass spectrum.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据