4.6 Article

The glucose-deprivation network counteracts lapatinib-induced toxicity in resistant ErbB2-positive breast cancer cells

期刊

MOLECULAR SYSTEMS BIOLOGY
卷 8, 期 -, 页码 -

出版社

WILEY
DOI: 10.1038/msb.2012.25

关键词

bioinformatics; computational methods; functional genomics; metabolic and regulatory networks; signal transduction

资金

  1. Komen for the Cure postdoctoral fellowship [KG101547]
  2. [NIH-R01 CA125109]

向作者/读者索取更多资源

Dynamic interactions between intracellular networks regulate cellular homeostasis and responses to perturbations. Targeted therapy is aimed at perturbing oncogene addiction pathways in cancer, however, development of acquired resistance to these drugs is a significant clinical problem. A network-based computational analysis of global gene expression data from matched sensitive and acquired drug-resistant cells to lapatinib, an EGFR/ErbB2 inhibitor, revealed an increased expression of the glucose deprivation response network, including glucagon signaling, glucose uptake, gluconeogenesis and unfolded protein response in the resistant cells. Importantly, the glucose deprivation response markers correlated significantly with high clinical relapse rates in ErbB2-positive breast cancer patients. Further, forcing drug-sensitive cells into glucose deprivation rendered them more resistant to lapatinib. Using a chemical genomics bioinformatics mining of the CMAP database, we identified drugs that specifically target the glucose deprivation response networks to overcome the resistant phenotype and reduced survival of resistant cells. This study implicates the chronic activation of cellular compensatory networks in response to targeted therapy and suggests novel combinations targeting signaling and metabolic networks in tumors with acquired resistance. Molecular Systems Biology 8: 596; published online 31 July 2012; doi:10.1038/msb.2012.25 Subject Categories: cellular metabolism; signal transduction; molecular biology of disease

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据