4.3 Article

Impaired noradrenaline homeostasis in rats with painful diabetic neuropathy as a target of duloxetine analgesia

期刊

MOLECULAR PAIN
卷 9, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1744-8069-9-59

关键词

Pain; Streptozotocin; Diabetes mellitus; Noradrenaline; DSP-4; Duloxetine; Spinal cord; Dopamine-beta-hydroxylase; Norepinephrine transporter

资金

  1. JSPS KAKENHI [21390436, 25293136, 25860429]
  2. Japan Science and Technology Agency
  3. MEXT [S1311009]
  4. Jikei University School of Medicine Graduate Research Fund
  5. Grants-in-Aid for Scientific Research [21390436, 25860429, 25293136] Funding Source: KAKEN

向作者/读者索取更多资源

Background: Painful diabetic neuropathy (PDN) is a serious complication of diabetes mellitus that affects a large number of patients in many countries. The molecular mechanisms underlying the exaggerated nociception in PDN have not been established. Recently, duloxetine (DLX), a serotonin and noradrenaline re-uptake inhibitor, has been recommended as one of the first-line treatments of PDN in the United States Food and Drug Administration, the European Medicines Agency and the Japanese Guideline for the Pharmacologic Management of Neuropathic pain. Because selective serotonin re-uptake inhibitors show limited analgesic effects in PDN, we examined whether the potent analgesic effect of DLX contributes toward improving the pathologically aberrant noradrenaline homeostasis in diabetic models. Results: In streptozotocin (STZ) (50 mg/kg, i.v.)-induced diabetic rats that exhibited robust mechanical allodynia and thermal hyperalgesia, DLX (10 mg/kg, i.p.) significantly and markedly increased the nociceptive threshold. The analgesic effect of DLX was nullified by the prior administration of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) (50 mg/kg, i.p.), which drastically eliminated dopamine-beta-hydroxylase-and norepinephrine transporter-immunopositive fibers in the lumbar spinal dorsal horn and significantly reduced the noradrenaline content in the lumbar spinal cord. The treatment with DSP-4 alone markedly lowered the nociceptive threshold in vehicle-treated non-diabetic rats; however, this pro-nociceptive effect was occluded in STZ-treated diabetic rats. Furthermore, STZ-treated rats exhibited a higher amount of dopamine-beta-hydroxylase-and norepinephrine transporter-immunopositive fibers in the dorsal horn and noradrenaline content in the spinal cord compared to vehicle-treated rats. Conclusions: Impaired noradrenaline-mediated regulation of the spinal nociceptive network might underlie exaggerated nociception in PDN. DLX might exert its analgesic effect by selective enhancement of noradrenergic signals, thus counteracting this situation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据